精英家教网 > 高中数学 > 题目详情
15.已知$1+\frac{1}{1+2}=\frac{4}{3}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}=\frac{3}{2}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}=\frac{8}{5}$,…,若$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+…+n}=\frac{12}{7}$,则n=(  )
A.5B.6C.7D.8

分析 方法一:直接观察,归纳可得结论,
方法二,求出数列的前n项和,即可求出n.

解答 解:方法一:$1+\frac{1}{1+2}=\frac{4}{3}$=$\frac{2×2}{2+1}$,
$1+\frac{1}{1+2}+\frac{1}{1+2+3}=\frac{3}{2}$=$\frac{6}{4}$=$\frac{2×3}{3+1}$,
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}=\frac{8}{5}$=$\frac{2×4}{4+1}$
…,
若$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+…+n}=\frac{12}{7}$=$\frac{2×6}{6+1}$,
∴n=6,
方法二:$\frac{1}{1+2+3+…+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+3+…+n}$=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{2}{n+1}$)=$\frac{2n}{n+1}$,
令$\frac{2n}{n+1}$=$\frac{12}{7}$,
解得n=6
故选:B

点评 本题考查了归纳推理的问题,关键是找到规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有10人.在20名女性驾驶员中,平均车速超过100km/h的有5人,不超过100km/h的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关;
平均车速超过100km/h人数平均车速不超过100km/h人数合计
男性驾驶员人数
女性驾驶员人数
合计
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过100km/h的车辆数为ζ,若每次抽取的结果是相互独立的,求ζ的分布列和数学期望.
参考公式:${k^2}=\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.1500.1000.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,点E为PA的中点.
(1)求证:PC∥平面BED;
(2)求异面直线AD与PB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:如果是个奇数,则下一步变成3N+1;如果是个偶数,则下一步变成$\frac{N}{2}$.不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的4-2-1循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为(  )
A.142B.71C.214D.107

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为(  )
附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544.
A.0.2718B.0.0456C.0.3174D.0.1359

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.方程log2(4x-3)=x+1的解集为{log23}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${∫}_{0}^{2}$(3x2-1)dx=m,则$(1-x){({x^2}+\frac{1}{x})^m}$的展开式中x4的系数是-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下图为某一函数的求值程序框图,根据框图,如果输出的y的值为3,那么应输入x=(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{1}{3}+\frac{π}{12}$B.$1+\frac{π}{12}$C.$\frac{1}{3}+\frac{π}{4}$D.$1+\frac{π}{4}$

查看答案和解析>>

同步练习册答案