精英家教网 > 高中数学 > 题目详情
7.已知${∫}_{0}^{2}$(3x2-1)dx=m,则$(1-x){({x^2}+\frac{1}{x})^m}$的展开式中x4的系数是-20.

分析 计算定积分得出m的值,再利用二项式定理求出(x2+$\frac{1}{x}$)m的展开式中含x3和x4的系数,得出答案.

解答 解:m=${∫}_{0}^{2}$(3x2-1)dx=(x3-x)|${\;}_{0}^{2}$=6,
∴(x2+$\frac{1}{x}$)6的通项为Tr+1=${C}_{6}^{r}$(x2r($\frac{1}{x}$)6-r=${C}_{6}^{r}$x3r-6
令3r-6=3得r=3,∴(x2+$\frac{1}{x}$)6的展开式中含x3的系数为${C}_{6}^{3}$=20,
令3r-6=4得r=$\frac{10}{3}$,舍,∴(x2+$\frac{1}{x}$)6的展开式中不含x4项.
∴$(1-x){({x^2}+\frac{1}{x})^m}$的展开式中x4的系数为-1×20=-20.
故答案为:-20.

点评 本题考查了定积分的计算,二项式定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数 f(x)=|2x+1-|2x-t|(t∈R).
  (Ⅰ)当 t=3时,解关于x 的不等式 f(x)<1;
  (Ⅱ)?x∈R使得,求 f(x)≤-5,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是把二进制数11111(2)化为十进制数的一个程序框图,则输出的S=(  )
 
A.15B.30C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$1+\frac{1}{1+2}=\frac{4}{3}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}=\frac{3}{2}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}=\frac{8}{5}$,…,若$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+…+n}=\frac{12}{7}$,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知曲线$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$,θ∈[0,2π)上一点P(x,y)到定点M(a,0),(a>0)的最小距离为$\frac{3}{4}$,则a=$\frac{11}{4}$或$\frac{\sqrt{21}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点(包括边界),则$\overrightarrow{PA}•\overrightarrow{PC}$的取值范围是$[\frac{1}{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A,B,C三点都在体积为$\frac{500π}{3}$的球O的表面上,若AB=4,∠ACB=30°,则球心O到平面ABC的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线E:y2=4x,设A、B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O为坐标原点)
(Ⅰ)求证:直线AB必过定点,并求出该定点Q的坐标;
(Ⅱ)过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,直线l过定点(-1,0),且倾斜角为α(0<α<π),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ=cosθ(ρcosθ+8).
(1)写出l的参数方程和C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

同步练习册答案