5£®ÎªÁËÑо¿¼ÒÓýγµÔÚ¸ßËÙ¹«Â·ÉϵijµËÙÇé¿ö£¬½»Í¨²¿ÃÅËæ»ú¶Ô50Ãû¼ÒÓýγµ¼ÝʻԱ½øÐе÷²é£¬µÃµ½ÆäÔÚ¸ßËÙ¹«Â·ÉÏÐÐʻʱµÄƽ¾ù³µËÙÇé¿öΪ£ºÔÚ30ÃûÄÐÐÔ¼ÝʻԱÖУ¬Æ½¾ù³µËÙ³¬¹ý100km/hµÄÓÐ20ÈË£¬²»³¬¹ý100km/hµÄÓÐ10ÈË£®ÔÚ20ÃûÅ®ÐÔ¼ÝʻԱÖУ¬Æ½¾ù³µËÙ³¬¹ý100km/hµÄÓÐ5ÈË£¬²»³¬¹ý100km/hµÄÓÐ15ÈË£®
£¨¢ñ£©Íê³ÉÏÂÃæµÄÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪƽ¾ù³µËÙ³¬¹ý100km/hµÄÈËÓëÐÔ±ðÓйأ»
ƽ¾ù³µËÙ³¬¹ý100km/hÈËÊýƽ¾ù³µËÙ²»³¬¹ý100km/hÈËÊýºÏ¼Æ
ÄÐÐÔ¼ÝʻԱÈËÊý
Å®ÐÔ¼ÝʻԱÈËÊý
ºÏ¼Æ
£¨¢ò£©ÒÔÉÏÊöÊý¾ÝÑù±¾À´¹À¼Æ×ÜÌ壬ÏÖ´Ó¸ßËÙ¹«Â·ÉÏÐÐÊ»µÄ´óÁ¿¼ÒÓýγµÖÐËæ»ú³éÈ¡3Á¾£¬¼ÇÕâ3Á¾³µÖмÝʻԱΪŮÐÔÇÒ³µËÙ²»³¬¹ý100km/hµÄ³µÁ¾ÊýΪ¦Æ£¬Èôÿ´Î³éÈ¡µÄ½á¹ûÊÇÏ໥¶ÀÁ¢µÄ£¬Ç󦯵ķֲ¼ÁкÍÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£º${k^2}=\frac{{n£¨ad-bc{£©^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©0.1500.1000.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒ⣬ÌîдÁÐÁª±í£¬¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨¢ò£©¸ù¾ÝÑù±¾¹À¼Æ×ÜÌåµÄ˼Ï룬ÇóµÃ´Ó¸ßËÙ¹«Â·ÉÏÐÐÊ»µÄ´óÁ¿¼ÒÓýγµÖÐËæ¼´³éÈ¡1Á¾£¬
¼ÝʻԱΪŮÐÔÇÒ³µËÙ²»³¬¹ý100km/hµÄ³µÁ¾µÄ¸ÅÂÊ£¬Öª¦ÎµÄ¿ÉÄÜȡֵ£¬ÇҦΡ«B£¨3£¬$\frac{3}{10}$£©£¬
¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊ£¬Ð´³ö¦ÎµÄ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬ÌîдÁÐÁª±íÈçÏ£»

ƽ¾ù³µÊý³¬¹ý
ÈËÊý
ƽ¾ù³µËÙ²»³¬¹ý
ÈËÊý
ºÏ¼Æ
ÄÐÐÔ¼ÝʻԱÈËÊý201030
Å®ÐÔ¼ÝʻԱÈËÊý51520
ºÏ¼Æ252550
¼ÆËãK2=$\frac{50{¡Á£¨20¡Á15-10¡Á5£©}^{2}}{30¡Á20¡Á25¡Á25}$=$\frac{25}{3}$¡Ö8.333£¾7.879£¬
ËùÒÔÓÐ99.5%µÄ°ÑÎÕÈÏΪƽ¾ù³µËÙ³¬¹ý100km/hÓëÐÔ±ðÓйأ»
£¨¢ò£©¸ù¾ÝÑù±¾¹À¼Æ×ÜÌåµÄ˼Ï룬´Ó¸ßËÙ¹«Â·ÉÏÐÐÊ»µÄ´óÁ¿¼ÒÓýγµÖÐËæ¼´³éÈ¡1Á¾£¬
¼ÝʻԱΪŮÐÔÇÒ³µËÙ²»³¬¹ý100km/hµÄ³µÁ¾µÄ¸ÅÂÊΪ$\frac{15}{50}=\frac{3}{10}$£¬
ËùÒԦεĿÉÄÜȡֵΪ0£¬1£¬2£¬3£¬ÇҦΡ«B£¨3£¬$\frac{3}{10}$£©£¬
¡àP£¨¦Î=0£©=${C}_{3}^{0}$•${£¨\frac{3}{10}£©}^{0}$•${£¨\frac{7}{10}£©}^{3}$=$\frac{343}{1000}$£¬
P£¨¦Î=1£©=${C}_{3}^{1}$•$\frac{3}{10}$•${£¨\frac{7}{10}£©}^{2}$=$\frac{441}{1000}$£¬
P£¨¦Î=2£©=${C}_{3}^{2}$•${£¨\frac{3}{10}£©}^{2}$•$\frac{7}{10}$=$\frac{189}{1000}$£¬
P£¨¦Î=3£©=${C}_{3}^{3}$•${£¨\frac{3}{10}£©}^{3}$•${£¨\frac{7}{10}£©}^{0}$=$\frac{27}{1000}$£»
¦ÎµÄ·Ö²¼ÁÐΪ£º
¦Î0123
P$\frac{343}{1000}$$\frac{441}{1000}$$\frac{189}{1000}$$\frac{27}{1000}$
ÊýѧÆÚÍûΪ$E£¨¦Î£©=0¡Á\frac{343}{1000}+1¡Á\frac{441}{1000}+2¡Á\frac{189}{1000}+3¡Á\frac{27}{1000}=\frac{9}{10}=0.9$£»
»ò$E£¨¦Î£©=np=3¡Á\frac{3}{10}=0.9$£®

µãÆÀ ±¾Ì⿼²éÁ˶þÏî·Ö²¼ÁеÄÐÔÖʼ°ÆäÊýѧÆÚÍûºÍ¶ÀÁ¢ÐÔ¼ìÑé˼Ïë·½·¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÔ²CµÄ°ë¾¶Îª2£¬Ô²ÐÄÔÚxÖáµÄÕý°ëÖáÉÏ£¬Ö±Ïß3x-4y+4=0ÓëÔ²CÏàÇУ®
£¨I£©ÇóÔ²CµÄ·½³Ì£»
£¨II£©¹ýµãQ£¨0£¬-3£©µÄÖ±ÏßlÓëÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬Èô$\overrightarrow{OA}•\overrightarrow{OB}$=3£¨OÎª×ø±êÔ­µã£©£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ö±½Ç×ø±êϵxOyÖУ¬ÇúÏßC£ºx2+£¨y-1£©2=4ÓëyÖḺ°ëÖá½»ÓÚµãK£¬Ö±ÏßlÓëCÏàÇÐÓÚK£¬TΪCÉÏÈÎÒâÒ»µã£¬T¡äΪTÔÚlÉϵÄÉäÓ°£¬PΪT£¬T'µÄÖе㣮
£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£¦£µÄ·½³Ì£»
£¨¢ò£©¹ì¼£¦£ÓëxÖá½»ÓÚA£¬B£¬µãM£¬NΪÇúÏߦ£Éϵĵ㣬ÇÒOM¡ÎAP£¬ON¡ÎBP£¬ÊÔ̽¾¿Èý½ÇÐÎOMNµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¬ÈôΪ¶¨Öµ£¬Çó³ö¸ÃÖµ£»Èô·Ç¶¨Öµ£¬ÇóÆäȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁлý·ÖµÄÖµµÈÓÚ1µÄÊÇ£¨¡¡¡¡£©
A£®$\int_0^1{xdx}$B£®${¡Ò}_{0}^{1}$£¨x+1£©dxC£®${¡Ò}_{0}^{1}$1dxD£®${¡Ò}_{0}^{1}$$\frac{1}{2}$dx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵÖÐxOy£¬Ö±ÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}\right.$£¨tÊDzÎÊý£©£®ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=sin¦È-cos¦È£¨¦ÈÊDzÎÊý£©£®
£¨¢ñ£©½«ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢ÅжÏÇúÏßC2Ëù±íʾµÄÇúÏߣ»
£¨¢ò£©ÈôMΪÇúÏßC2ÉϵÄÒ»¸ö¶¯µã£¬ÇóµãMµ½Ö±ÏßC1µÄ¾àÀëµÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÔ²CµÄ·½³ÌΪ£¨x-3£©2+£¨y-4£©2=16£¬¹ýÖ±Ïßl£º6x+8y-5a=0£¨a£¾0£©ÉϵÄÈÎÒâÒ»µã×÷Ô²µÄÇÐÏߣ¬ÈôÇÐÏß³¤µÄ×îСֵΪ$2\sqrt{5}$£¬ÔòÖ±ÏßlÔÚyÖáÉϵĽؾàΪ$\frac{55}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êý f£¨x£©=|2x+1-|2x-t|£¨t¡ÊR£©£®
¡¡¡¡£¨¢ñ£©µ± t=3ʱ£¬½â¹ØÓÚx µÄ²»µÈʽ f£¨x£©£¼1£»
¡¡¡¡£¨¢ò£©?x¡ÊRʹµÃ£¬Çó f£¨x£©¡Ü-5£¬ÇótµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªxµÄ²»µÈʽ|x+3|-|x-1|¡Üa2-3a£¬ÆäÖÐaΪʵÊý£®
£¨1£©µ±a=1ʱ£¬½â²»µÈʽ£»
£¨2£©Èô²»µÈʽµÄ½â¼¯ÎªR£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª$1+\frac{1}{1+2}=\frac{4}{3}$£¬$1+\frac{1}{1+2}+\frac{1}{1+2+3}=\frac{3}{2}$£¬$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}=\frac{8}{5}$£¬¡­£¬Èô$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+¡­+\frac{1}{1+2+3+¡­+n}=\frac{12}{7}$£¬Ôòn=£¨¡¡¡¡£©
A£®5B£®6C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸