精英家教网 > 高中数学 > 题目详情
20.在直角坐标系中xOy,直线C1的参数方程为$\left\{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}\right.$(t是参数).在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=sinθ-cosθ(θ是参数).
(Ⅰ)将曲线C2的极坐标方程化为直角坐标方程,并判断曲线C2所表示的曲线;
(Ⅱ)若M为曲线C2上的一个动点,求点M到直线C1的距离的最大值和最小值.

分析 (I)曲线C2的极坐标方程为ρ=sinθ-cosθ(θ是参数).可得ρ2=ρ(sinθ-cosθ),利用互化公式可得直角坐标方程:通过配方可得曲线C2所表示的曲线为圆.
(Ⅱ)直线C1的参数方程为$\left\{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}\right.$(t是参数).消去参数t化为普通方程:2x-y-1=0.求出圆心C2到直线C1的距离d.可得点M到直线C1的距离的最大值为d+r,最小值为d-r.

解答 解:(I)曲线C2的极坐标方程为ρ=sinθ-cosθ(θ是参数).可得ρ2=ρ(sinθ-cosθ),化为直角坐标方程:x2+y2=y-x.
配方为:$(x+\frac{1}{2})^{2}+(y-\frac{1}{2})^{2}$=$\frac{1}{2}$.可得曲线C2所表示的曲线为圆:圆心为C2$(-\frac{1}{2},\frac{1}{2})$,半径r=$\frac{\sqrt{2}}{2}$.
(Ⅱ)直线C1的参数方程为$\left\{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}\right.$(t是参数),消去参数t化为普通方程:2x-y-1=0.
圆心C2到直线C1的距离d=$\frac{|-\frac{1}{2}×2-\frac{1}{2}-1|}{\sqrt{5}}$=$\frac{\sqrt{5}}{2}$.
∴点M到直线C1的距离的最大值为$\frac{\sqrt{5}}{2}$+$\frac{\sqrt{2}}{2}$,最小值为$\frac{\sqrt{5}}{2}$-$\frac{\sqrt{2}}{2}$.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆相交弦长问题、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知四棱锥的三视图如图所示,则该四棱锥的全面积为(  )
A.4B.5C.$2+\sqrt{5}$D.$3+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三棱锥的三视图如图所示,正视图和俯视图都是等腰直角三角形,则该三棱锥中棱长最大值是(  )
A.$2\sqrt{5}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.二项式${(2x-\frac{a}{{\sqrt{x}}})^n}$的展开式中所有项二项式系数和为64,则展开式中的常数项为60,则a的值为(  )
A.2B.±1C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n+1}$(n∈N*),则当n=2时,f(n)是$\frac{137}{60}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有10人.在20名女性驾驶员中,平均车速超过100km/h的有5人,不超过100km/h的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关;
平均车速超过100km/h人数平均车速不超过100km/h人数合计
男性驾驶员人数
女性驾驶员人数
合计
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过100km/h的车辆数为ζ,若每次抽取的结果是相互独立的,求ζ的分布列和数学期望.
参考公式:${k^2}=\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.1500.1000.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行若图所示的程序框图,若输入的n=216,则输出s的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=x3-3bx+3b在(0,1)内有极小值,则实数b的取值范围是(  )
A.(0,1)B.(-∞,1)C.(0,+∞)D.$(-∞,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为(  )
附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544.
A.0.2718B.0.0456C.0.3174D.0.1359

查看答案和解析>>

同步练习册答案