精英家教网 > 高中数学 > 题目详情
10.已知四棱锥的三视图如图所示,则该四棱锥的全面积为(  )
A.4B.5C.$2+\sqrt{5}$D.$3+\sqrt{5}$

分析 由三视图得到四棱锥的直观图,关键图中数据求表面积.

解答 解:由三视图得到四棱锥如图:所以表面积为:$1×1+\frac{1}{2}×2×1+\frac{1}{2}×1×2+\frac{1}{2}×1×\sqrt{5}×2$=3+$\sqrt{5}$;
故选D.

点评 本题考查了由几何体的三视图求几何体的表面积;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$θ∈({\frac{π}{2},π}),\;\;sinθ=\frac{3}{5}$,则$tan({θ+\frac{π}{4}})=({\;\;\;\;\;\;})$.
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某木材加工流程图如图所示,则木材在封底漆之前需要经过的工序有(  )
A.9道B.8道C.7道D.6道

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某四面体的三视图如图所示,则其四个面中最大面的面积是(  )
A.4B.$2\sqrt{2}$C.$2\sqrt{6}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C与圆D:(x-1)2+(y+2)2=4关于直线y=x对称.
(Ⅰ) 求圆C的标准方程;
(Ⅱ)若直线l:y=kx+1与圆C交于A、B两点,且$|{AB}|=2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x-4y+4=0与圆C相切.
(I)求圆C的方程;
(II)过点Q(0,-3)的直线l与圆C交于不同的两点A(x1,y1)、B(x2,y2),若$\overrightarrow{OA}•\overrightarrow{OB}$=3(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=(x-a)|x|存在反函数,则实数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=1+2sinθ\end{array}\right.$(参数$θ∈[{-\frac{π}{2},\frac{π}{2}}]$),则曲线C(  )
A.表示直线B.表示线段C.表示圆D.表示半个圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系中xOy,直线C1的参数方程为$\left\{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}\right.$(t是参数).在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=sinθ-cosθ(θ是参数).
(Ⅰ)将曲线C2的极坐标方程化为直角坐标方程,并判断曲线C2所表示的曲线;
(Ⅱ)若M为曲线C2上的一个动点,求点M到直线C1的距离的最大值和最小值.

查看答案和解析>>

同步练习册答案