精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=(x-a)|x|存在反函数,则实数a=0.

分析 a>0时,f(x)=$\left\{\begin{array}{l}{(x-\frac{a}{2})^{2}-\frac{{a}^{2}}{4},x≥0}\\{-(x-\frac{a}{2})^{2}+\frac{{a}^{2}}{4},x<0}\end{array}\right.$,利用单调性即可判断出不存在反函数.
a=0时,f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,可得函数f(x)在R上单调递增,因此存在反函数.
a<0时,f(x)=$\left\{\begin{array}{l}{(x-\frac{a}{2})^{2}-\frac{{a}^{2}}{4},x≥0}\\{-(x-\frac{a}{2})^{2}+\frac{{a}^{2}}{4},x<0}\end{array}\right.$,利用单调性即可判断出不存在反函数.

解答 解:a>0时,f(x)=$\left\{\begin{array}{l}{(x-\frac{a}{2})^{2}-\frac{{a}^{2}}{4},x≥0}\\{-(x-\frac{a}{2})^{2}+\frac{{a}^{2}}{4},x<0}\end{array}\right.$,
可得函数f(x)在$(0,\frac{a}{2})$内单调递减,在(-∞,0),$(\frac{a}{2},+∞)$上单调递增,因此不存在反函数.
a=0时,f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,可得函数f(x)在(-∞,+∞)上单调递增,因此存在反函数.
a<0时,f(x)=$\left\{\begin{array}{l}{(x-\frac{a}{2})^{2}-\frac{{a}^{2}}{4},x≥0}\\{-(x-\frac{a}{2})^{2}+\frac{{a}^{2}}{4},x<0}\end{array}\right.$,
可得函数f(x)在$(\frac{a}{2},0)$内单调递减,在(-∞,$\frac{a}{2}$),(0,+∞)上单调递增,
因此不存在反函数.
综上可得:a=0.
故答案为:0.

点评 本题考查了反函数的定义及其判定、二次函数的单调性、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数f(x)满足2x2f(x)+x3f′(x)=ex,f(2)=$\frac{{e}^{2}}{8}$,则x∈[2,+∞)时,f(x)(  )
A.有最大值$\frac{{e}^{2}}{8}$B.有最小值$\frac{{e}^{2}}{8}$C.有最大值$\frac{{e}^{2}}{2}$D.有最小值$\frac{{e}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设an=xn,bn=($\frac{1}{n}$)2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn-1,x∈R,a∈N*
(Ⅰ)若x=2,求数列{$\frac{2n-1}{{a}_{n}}$}的前n项和Tn
(Ⅱ)求证:对?n∈N*,方程fn(x)=0在xn∈[$\frac{2}{3}$,1]上有且仅有一个根;
(Ⅲ)求证:对?p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn-xn+p<$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知四棱锥的三视图如图所示,则该四棱锥的全面积为(  )
A.4B.5C.$2+\sqrt{5}$D.$3+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若|x-s|<t,|y-s|<t,则下列不等式中一定成立的是(  )
A.|x-y|<2tB.|x-y|<tC.|x-y|>2tD.|x-y|>t

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设△ABC的内角A、B、C的对边长分别为a、b、c.设S为△ABC的面积,满足S=$\frac{\sqrt{3}}{4}$(a2+c2-b2).
(Ⅰ)求B;
(Ⅱ)若b=$\sqrt{3}$,求($\sqrt{3}$-1)a+2c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,圆O是一半径为10米的圆形草坪,为了满足周边市民跳广场舞的需要,现规划在草坪上建一个广场,广场形状如图中虚线部分所示的曲边四边形,其中A,B两点在⊙O上,A,B,C,D恰是一个正方形的四个顶点.根据规划要求,在A,B,C,D四点处安装四盏照明设备,从圆心O点出发,在地下铺设4条到A,B,C,D四点线路OA,OB,OC,OD.
(1)若正方形边长为10米,求广场的面积;
(2)求铺设的4条线路OA,OB,OC,OD总长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三棱锥的三视图如图所示,正视图和俯视图都是等腰直角三角形,则该三棱锥中棱长最大值是(  )
A.$2\sqrt{5}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行若图所示的程序框图,若输入的n=216,则输出s的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

同步练习册答案