精英家教网 > 高中数学 > 题目详情
14.如图,圆O是一半径为10米的圆形草坪,为了满足周边市民跳广场舞的需要,现规划在草坪上建一个广场,广场形状如图中虚线部分所示的曲边四边形,其中A,B两点在⊙O上,A,B,C,D恰是一个正方形的四个顶点.根据规划要求,在A,B,C,D四点处安装四盏照明设备,从圆心O点出发,在地下铺设4条到A,B,C,D四点线路OA,OB,OC,OD.
(1)若正方形边长为10米,求广场的面积;
(2)求铺设的4条线路OA,OB,OC,OD总长度的最小值.

分析 (1)连接AB,求出正方形的面积,再求出弓形面积,作和得答案;
(2)过O作OK⊥CD,垂足为K,过O作OH⊥AD(或其延长线),垂足为H,设∠OAD=θ(0<θ<$\frac{π}{4}$),把OH,DH分别用含有θ的三角函数值表示,利用勾股定理求OD,再由辅助角公式求得最小值,则铺设的4条线路OA,OB,OC,OD总长度的最小值可求.

解答 解:(1)连接AB,
∵AB=10,∴正方形ABCD的面积为100,
又OA=OB=10,∴△AOB为正三角形,则$∠AOB=\frac{π}{3}$,
而圆的面积为100π,∴扇形AOB得面积为$\frac{100π}{6}=\frac{50π}{3}$,
又三角形AOB的面积为$\frac{1}{2}×10×5\sqrt{3}=25\sqrt{3}$.
∴弓形面积为$\frac{50π}{3}-25\sqrt{3}$,
则广场面积为100+$\frac{50π}{3}-25\sqrt{3}$(平方米);
(2)过O作OK⊥CD,垂足为K,过O作OH⊥AD(或其延长线),垂足为H,
设∠OAD=θ(0<θ<$\frac{π}{4}$),
则OH=10sinθ,AH=10cosθ,
∴DH=|AD-AH|=|2OH-AH|=|20sinθ-10cosθ|,
∴OD=$\sqrt{100si{n}^{2}θ+(20sinθ-10cosθ)^{2}}$=$\sqrt{300-200\sqrt{2}sin(2θ+\frac{π}{4})}$.
∴当θ=$\frac{π}{8}$时,$O{D}_{min}=10(\sqrt{2}-1)$.
∴铺设的4条线路OA,OB,OC,OD总长度的最小值为$20\sqrt{2}$(米).

点评 本题是应用题,考查简单的数学建模思想方法,考查圆在实际问题中的应用,训练了三角函数最值的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知直线l:y=2x+m与曲线y=-$\sqrt{4-{x}^{2}}$有两个公共点,则实数m的取值范围是(  )
A.[-2$\sqrt{5}$,-4]B.(-2$\sqrt{5}$,-4]C.[-2$\sqrt{5}$,-4)D.(-2$\sqrt{5}$,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C与圆D:(x-1)2+(y+2)2=4关于直线y=x对称.
(Ⅰ) 求圆C的标准方程;
(Ⅱ)若直线l:y=kx+1与圆C交于A、B两点,且$|{AB}|=2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=(x-a)|x|存在反函数,则实数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行学科偏差分析,决定从全班56位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号12345678
数学偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;
(2)若这次考试该班数学平均分为118分,物理平均分为90.5,试预测数学成绩126分的同学的物理成绩.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$x,
参考数据:$\sum_{i=1}^8{{x_i}{y_i}}$=324,$\sum_{i=1}^8{x_i^2}$=1256.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=1+2sinθ\end{array}\right.$(参数$θ∈[{-\frac{π}{2},\frac{π}{2}}]$),则曲线C(  )
A.表示直线B.表示线段C.表示圆D.表示半个圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在三角形ABC中,AB<AC,∠BAC=90°,边AB,AC的长分别为方程${x^2}-2({1+\sqrt{3}})x+4\sqrt{3}=0$的两个实数根,若斜边BC上有异于端点的E,F两点,且EF=1,∠EAF=θ,则tanθ的取值范围为(  )
A.$({\frac{{\sqrt{3}}}{3},\frac{{4\sqrt{3}}}{11}}]$B.$({\frac{{\sqrt{3}}}{9},\frac{{\sqrt{3}}}{3}})$C.$({\frac{{\sqrt{3}}}{9},\frac{{4\sqrt{3}}}{11}}]$D.$({\frac{{\sqrt{3}}}{9},\frac{{2\sqrt{3}}}{11}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.($\sqrt{x}$-$\frac{1}{x}$)9展开式中的常数项是(  )
A.-84B.84C.-36D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a=(1,0),\overrightarrow b=(0,1),\overrightarrow c=\overrightarrow a+λ\overrightarrow b(λ∈R)$,向量$\overrightarrow d$如图表示,则(  )
A.?λ>0,使得$\overrightarrow c⊥\overrightarrow d$B.?λ>0,使得<$\overrightarrow{c}$,$\overrightarrow{d}$>=60°
C.?λ<0,使得<$\overrightarrow{c}$,$\overrightarrow{d}$>=30°D.?λ>0,使得$\overrightarrow c=m\overrightarrow d(m$为不为0的常数)

查看答案和解析>>

同步练习册答案