精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=x3-3bx+3b在(0,1)内有极小值,则实数b的取值范围是(  )
A.(0,1)B.(-∞,1)C.(0,+∞)D.$(-∞,\frac{1}{2})$

分析 首先求出函数的导数,然后令导数为零,求出函数的极值,最后确定b的范围.

解答 解:由题意得f′(x)=3x2-3b,
令f′(x)=0,则x=±$\sqrt{b}$,(负值舍去)
又∵函数f(x)=x3-3bx+3b在区间(0,1)内有极小值,
∴0<$\sqrt{b}$<1,解得:0<b<1,
∴实数b的取值范围(0,1),
故选:A.

点评 熟练运用函数的导数求解函数的极值问题,同时考查了分析问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=1+2sinθ\end{array}\right.$(参数$θ∈[{-\frac{π}{2},\frac{π}{2}}]$),则曲线C(  )
A.表示直线B.表示线段C.表示圆D.表示半个圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系中xOy,直线C1的参数方程为$\left\{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}\right.$(t是参数).在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=sinθ-cosθ(θ是参数).
(Ⅰ)将曲线C2的极坐标方程化为直角坐标方程,并判断曲线C2所表示的曲线;
(Ⅱ)若M为曲线C2上的一个动点,求点M到直线C1的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数 f(x)=|2x+1-|2x-t|(t∈R).
  (Ⅰ)当 t=3时,解关于x 的不等式 f(x)<1;
  (Ⅱ)?x∈R使得,求 f(x)≤-5,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a=(1,0),\overrightarrow b=(0,1),\overrightarrow c=\overrightarrow a+λ\overrightarrow b(λ∈R)$,向量$\overrightarrow d$如图表示,则(  )
A.?λ>0,使得$\overrightarrow c⊥\overrightarrow d$B.?λ>0,使得<$\overrightarrow{c}$,$\overrightarrow{d}$>=60°
C.?λ<0,使得<$\overrightarrow{c}$,$\overrightarrow{d}$>=30°D.?λ>0,使得$\overrightarrow c=m\overrightarrow d(m$为不为0的常数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x的不等式|x+3|-|x-1|≤a2-3a,其中a为实数.
(1)当a=1时,解不等式;
(2)若不等式的解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=f(x)图象关于y轴对称的图象对应的函数为y=F(x),当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数y=|2x-t|的“不动区间”,则实数t的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是把二进制数11111(2)化为十进制数的一个程序框图,则输出的S=(  )
 
A.15B.30C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A,B,C三点都在体积为$\frac{500π}{3}$的球O的表面上,若AB=4,∠ACB=30°,则球心O到平面ABC的距离为3.

查看答案和解析>>

同步练习册答案