精英家教网 > 高中数学 > 题目详情

【题目】某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床价高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:要方便结账,床价应为1元的整数倍;该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入).

(1)把y表示成x的函数,并求出其定义域;

(2)试确定该宾馆将床位定价为多少时,既符合上面的两个条件,又能使净收入最多?

【答案】(1)函数y= ,定义域为{x|};

(2)当床位定价为22元时净收入最多.

【解析】

试题分析:(1)净收入等于收入减去支出,依题意需分为两种情况求解析式,同时注意净收入必须大于零且价格为正整数,所以对每段函数的定义域需严格限制;(2)由分段函数的特点,需对两段函数分别求最大值,两段中最大的那个最大值即为所求.

试题解析: (1)依题意有

y=

因为

所以函数为

y=

定义域为{x|}.

(2)当x=10时)取得最大值425元,

当x>10时

当且仅当时,y取最大值,

,所以当x=22时)取得最大值833元,比较两种情况,可知当床位定价为22元时净收入最多.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f (x)=
(1)求函数f (x)的图象在x= 处的切线方程;
(2)求y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队伍只比赛一场),有高一、高二、高三共三个队参赛,高一胜高二的概率为,高一胜高三的概率为,高二胜高三的概率为,每场胜负相互独立,胜者记1分,负者记0分,规定:积分相同时,高年级获胜.

(1)若高三获得冠军的概率为,求

(2)记高三的得分为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知数列{an}是等差数列,且a1,a2(a1<a2)分别为方程x2﹣6x+5=0的二根.

(1)求数列{an}的前n项和Sn

(2)在(1)中,设bn=,求证:当c=﹣时,数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=1﹣,求解:(1)f(x)的值域;(2)证明f(x)为R上的增函数. .
(1)求f(x)的值域;
(2)证明f(x)为R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(1)b5=
(2)b2n1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义集合A={x|2x≥1},B={y|y= },则A∩RB=(
A.(1,+∞)
B.[0,1]
C.[0,1)
D.[1,+∞)

查看答案和解析>>

同步练习册答案