精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的顶点为原点,焦点为圆的圆心.经过点的直线交抛物线两点,交圆两点, 在第一象限, 在第四象限.

(1)求抛物线的方程;

(2)是否存在直线,使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

【答案】(1);(2).

【解析】试题分析:(1)根据圆的圆心为抛物线的焦点,可求得 ,即可求得抛物线方程;(2)若是等差中项,那么 ,那么 ,再根据抛物线的焦点弦长可知 ,将问题转化为根与系数的关系,求出直线方程.

试题解析:(1)根据已知设抛物线的方程为.

∵圆的方程为

∴圆心的坐标为,半径.

,解得.

∴抛物线的方程为.

(2)∵的等差中项,∴.

.

垂直于轴,则的方程为,代入,得.

此时,即直线不满足题意.

不垂直于轴,设的斜率为,由已知得 的方程为.

,由.

.

∵抛物线的准线为

,解得.

时, 化为

,∴有两个不相等实数根.

满足题意,即直线满足题意.

∴存在满足要求的直线,它的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点F且垂直于x轴的直线与椭圆相交,所得弦长为1,斜率为 ()的直线过点,且与椭圆相交于不同的两点. 

(Ⅰ)求椭圆的方程;

(Ⅱ)在轴上是否存在点,使得无论取何值, 为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某消费品专卖店的经营资料显示如下:
①这种消费品的进价为每件14元;
②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q= ,点(14,22),(20,10),(26,1)在函数的图象上;
③每月需各种开支4400元.

(1)求月销量Q(百件)与销售价格P(元)的函数关系;
(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x
(1)求函数f(x)在R上的解析式;
(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的离心率为,过右焦点垂直于轴的直线与椭圆交于 两点且,又过左焦点任作直线交椭圆于点

(Ⅰ)求椭圆的方程;

(Ⅱ)椭圆上两点 关于直线对称,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中与函数y=x相等的函数是(
A.y=log22x
B.y=
C.y=2
D.y=( 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

同步练习册答案