分析 (1)本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况共有8种结果,求比值得到结果.
(2)是几何概型,确定a,b∈[0,4],表示面积为16的正方形区域,满足f(1)>0且f(-1)<0成立,落在正方形区域内的面积为6-$\frac{1}{2}×1×1$-$\frac{1}{2}×3×3$=11,即可求出概率.
解答 解:(1)由题意知,本题是一个古典概型,
试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,
而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)
(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,
根据古典概型概率公式得到P=$\frac{8}{36}$=$\frac{2}{9}$;
(2)a,b∈[0,4],表示面积为16的正方形区域,
∵f(1)>0且f(-1)<0成立,
∴$\left\{\begin{array}{l}{a+b-1>0}\\{a-b-1>0}\end{array}\right.$,落在正方形区域内的面积为6-$\frac{1}{2}×1×1$-$\frac{1}{2}×3×3$=11,
∴f(1)>0且f(-1)<0成立的概率为$\frac{11}{16}$.
点评 本题考查概率的计算,考查学生的计算能力,正确区分两种概型是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com