精英家教网 > 高中数学 > 题目详情
若函数f(x)=|x-2|+|x+2|的最小值为n,则(
x
-
1
x
n的展开式中的常数项是(  )
A、第二项B、第三项
C、第四项D、第五项
分析:由绝对值的几何意义知函数f(x)=|x-2|+|x+2|的最小值为4,写出二项式的展开式的通项,看出当变量x的指数是0时,求出n的值,得到项数.
解答:解:由绝对值的几何意义知函数f(x)=|x-2|+|x+2|的最小值为4,
∴n=4,
∴(
x
-
1
x
n=(
x
-
1
x
4
∴二项式的展开式是
C
r
4
(
x
)
4-r
(-
1
x
)
r
=(-1)r
C
4
r
(
x
)
4-2r

∴当4-2r=0时,r=2
展开式是一个常数项,
这是展开式的第三项,
故选B.
点评:本题考查二项式系数的性质及绝对值的几何意义,本题解题的关键是写出二项式的通项,所有的问题都可以在通项中解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)(x∈R)为奇函数,且存在反函数f-1(x)(与f(x)不同),F(x)=
2f(x)-2f-1(x)
2f(x)+2f-1(x)
,则下列关于函数F(x)的奇偶性的说法中正确的是(  )
A、F(x)是奇函数非偶函数
B、F(x)是偶函数非奇函数
C、F(x)既是奇函数又是偶函数
D、F(x)既非奇函数又非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案