精英家教网 > 高中数学 > 题目详情

【题目】下面给出四种说法:

①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;

②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③设随机变量X服从正态分布N(0,1),若P(x>1)=p则P(﹣1<X<0)= ﹣p

④回归直线一定过样本点的中心( ).

其中正确的说法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

【答案】C

【解析】对于①,用相关指数刻画回归效果时, 越大,说明模型的拟合效果越好, ①错误;对于②,命题 的否定是 ,②正确;对于③,根据正态分布 的性质可得,若

正确;对于回归直线一定过样本点的中心 ,④正确;综上所述②③④正确,故选 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了检验某种溶剂的挥发性,在容器为1升的容器中注入溶液,然后在挥发的过程中测量剩余溶液的容积.已知溶剂注入过程中,其容积y(升)与时间t(分钟)成正比,且恰在2分钟注满;注入完成后,y与t的关系为为常数),如图

(1)求容积y与时间t之间的函数关系式.

(2)当容器中的溶液少于8毫升时,试验结束,则从注入溶液开始,至少需要经过多少分钟,才能结束试验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂36名工人的年龄数据如下表.

工人编号 年龄

工人编号 年龄

工人编号 年龄

工人编号 年龄

 1   40

 10   36

 19   27

 28   34

 2   44

 11   31

 20   43

 29   39

 3   40

 12   38

 21   41

 30   43

 4   41

 13   39

 22   37

 31   38

 5   33

 14   43

 23   34

 32   42

 6   40

 15   45

 24   42

 33   53

 7   45

 16   39

 25   37

 34   37

 8   42

 17   38

 26   44

 35   49

 9   43

 18   36

 27   42

 36   39

(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;

(2)计算(1)中样本的均值x和方差s2

(3)36名工人中年龄在之间有多少人?所占的百分比是多少(精确到0.01%)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时, ,则称为“偏对函数”.现给出四个函数: . 则其中是“偏对称函数”的函数个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个几何体的主视图与左视图是全等的长方形,边长分别是,如图所示,俯视图是一个边长为的正方形.

(1)求该几何体的表面积;

(2)求该几何体的外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为。在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点P坐标为,圆与直线交于两点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)若函数有两个零点,求满足条件的最小正整数的值;

(3)若方程,有两个不相等的实数根,比较与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知某曲线C的极坐标方程为,直线的极坐标方程为

1)求该曲线C的直角坐标系方程及离心率

2)已知点为曲线C上的动点,求点到直线的距离的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆 的左、右焦点,点是椭圆上一点,且.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,若,其中为坐标原点,判断到直线的距离是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案