精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{a}{x}$-1+lnx,若存在x0>0,使f(x0)≤0成立,则得取值范围是(  )
A.a≥1B.0<a≤1C.a<1D.a≤1

分析 求出函数的导数,通过讨论a的范围,确定函数的单调性,求出f(x)的最大值,得到关于a的不等式,解出即可.

解答 解:f(x)的定义域是(0,+∞),
∴f′(x)=-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-a}{{x}^{2}}$,
当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,函数无最小值,
当a>0时,令f′(x)=0,解得x=a,
当f′(x)>0,即x>a,函数单调递增,
当f′(x)<0,即0<x<a,函数单调递减,
∴f(x)min=f(a)=lna
∵存在x0>0,使f(x0)≤0成立,
∴lna≤0,
解得0<a≤1,
故选:B

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-1)2(x-a)(a∈R)在x=$\frac{5}{3}$处取得极值.
(1)求实数a的值;
(2)求函数y=f(x)在闭区间[0,3]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx-$\frac{1}{2}a$x2+a.
(Ⅰ)当a=1时,判断函数f(x)的单调性;
(Ⅱ)若函数F(x)=f(x)-x有两个不同的极值点x1,x2
(i)求实数a的取值范围;
(ii)求证:f(x2)>$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{OM}$=(-2,3),$\overrightarrow{ON}$=(-1,-5),则$\frac{1}{2}$$\overrightarrow{MN}$=($\frac{1}{2}$,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ex,g(x)=kx+k,若函数f(x)的图象恒在函数g(x)图象的上方,则实数k的取值范围是(  )
A.[0,+∞)B.[0,1)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=ex-lnx-1,其中e是自然对数的底数
(1)求证:函数f(x)存在极小值;
(2)若?x∈[$\frac{1}{2}$,+∞),使得不等式$\frac{{e}^{x}}{x}$-lnx-$\frac{m}{x}$≤0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2+3x,则不等式f(2x-1)≤2的解集为(  )
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[-$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,A(1,$\frac{\sqrt{2}}{2}$)为椭圆上一点,AF交y轴于点M,且M为AF的中点.
(I)求椭圆C的方程;
(II)直线l与椭圆C有且只有一个公共点A,平行于OA的直线交l于P,交椭圆C于不同的两点D,E,问是否存在常数λ,使得|PA|2=λ|PD|•|PE|,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列结论中正确的是(  )
A.?n∈N*,2n2+5n+2能被2整除是真命题
B.?n∈N*,2n2+5n+2不能被2整除是真命题
C.?n∈N*,2n2+5n+2不能被2整除是真命题
D.?n∈N*,2n2+5n+2能被2整除是假命题

查看答案和解析>>

同步练习册答案