| A. | a≥1 | B. | 0<a≤1 | C. | a<1 | D. | a≤1 |
分析 求出函数的导数,通过讨论a的范围,确定函数的单调性,求出f(x)的最大值,得到关于a的不等式,解出即可.
解答 解:f(x)的定义域是(0,+∞),
∴f′(x)=-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-a}{{x}^{2}}$,
当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,函数无最小值,
当a>0时,令f′(x)=0,解得x=a,
当f′(x)>0,即x>a,函数单调递增,
当f′(x)<0,即0<x<a,函数单调递减,
∴f(x)min=f(a)=lna
∵存在x0>0,使f(x0)≤0成立,
∴lna≤0,
解得0<a≤1,
故选:B
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | [0,1) | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,$\frac{3}{2}$] | C. | [-$\frac{1}{2}$,$\frac{3}{2}$] | D. | [$\frac{1}{4}$,$\frac{3}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?n∈N*,2n2+5n+2能被2整除是真命题 | |
| B. | ?n∈N*,2n2+5n+2不能被2整除是真命题 | |
| C. | ?n∈N*,2n2+5n+2不能被2整除是真命题 | |
| D. | ?n∈N*,2n2+5n+2能被2整除是假命题 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com