精英家教网 > 高中数学 > 题目详情
3.已知P为抛物线C:y2=8x准线上任意一点,A是圆(x-1)2+y2=1上一动点,则|PA|的最小值为(  )
A.1B.2C.3D.4

分析 求出抛物线的准线方程,圆的圆心和半径r,求得圆心到直线的距离d,运用d-r即为最小值.

解答 解:抛物线C:y2=8x准线l为x=-2,
圆(x-1)2+y2=1的圆心C为(1,0),半径r为1,
则C到l的距离为d=1-(-2)=3,
即有|PA|的最小值为d-r=3-1=2.
故选B.

点评 本题考查抛物线的方程和性质,主要考查准线方程的运用,同时考查圆的方程的运用,注意求出圆心到直线的距离是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=3x+x-$\frac{1}{2}$的零点x0∈(n,n+1)(n∈Z),则n的值是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2+2bx+c(x∈R,a≠0)
(Ⅰ)若a=-1,c=0,且y=f(x)在[-1,3]上的最大值为g(b),求g(b);
(Ⅱ)若a>0,函数f(x)在[-8,-2]上不单调,且它的图象与x轴相切,求$\frac{f(1)}{b-2a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{(m+n)!}{n!}$=5040,则m!n=144.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c,d都是实数,且a2+b2=m2,c2+d2=n2(m>0,n>0),求证|ac+bd|≤$\frac{{m}^{2}+{n}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如果对任意实数x、y都有f(x+y)=f(x)•f(y)且f(1)=2
(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\frac{\sqrt{6}|m|\sqrt{3k^2+2-m^2}}{2+3k^2}$=$\frac{\sqrt{6}}{2}$,求证:3k2+2=2m2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C满足下列条件:
(1)过点A(2,-1);
(2)直线2x+y=0平分圆长;
(3)圆C与直线x+y-1相交所截的弦长为6$\sqrt{2}$,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设$\frac{1}{7}$≤k$≤\frac{1}{4}$,函数f(x)=|2x-1|-k的零点分别为x1,x2(x1<x2),函数g(x)=|2x-1|-$\frac{k}{2k+1}$的零点分别为x3,x4(x3<x4),则2${\;}^{({x}_{1}+{x}_{4})-({x}_{2}+{x}_{3})}$的最大值为(  )
A.$\frac{21}{25}$B.$\frac{4}{25}$C.$\frac{1}{16}$D.$\frac{15}{16}$

查看答案和解析>>

同步练习册答案