精英家教网 > 高中数学 > 题目详情

已知函数图象与轴异于原点的交点M处的切线为轴的交点N处的切线为, 并且平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,并且使得不等式恒成立,求实数的取值范围.

(1)2    (2) (3)

解析试题分析:
(1)根据题意求出f(x),g(x-1)与x轴交点的坐标,利用切线平行,即导函数在交点处的导函数值相等,即可求出f(x)中参数a的值,进而得到f(2).
(2)可以利用求定义域,求导,求单调性与极值 对比极值与端点值得到的取值范围.进而直接用u替代中的,把问题转化为求解在区间上的最小值,即为一个含参二次函数的最值.则利用二次函数的单调性,即分对称轴在区间的左边,中,右边三种情况进行讨论得到函数的最小值.
(3)对F(x)求导求并确定导函数的符号得到函数F(x)的单调性,有了F(x)的单调性,则要得到不等式,我们只需要讨论m的范围确定的大小关系,再根据单调性得到的大小关系,判断其是否符合不等式,进而得到m的取值范围.
试题解析:
(1) 图象与轴异于原点的交点  1分
图象与轴的交点   2分
由题意可得, 即     ,     3分
                       4分
(2)= 5分
,在 时,
单调递增,               6分
图象的对称轴,抛物线开口向上
①当时,          7分
②当时,  8分
③当时,
  9分
,
所以在区间上单调递增 
时,         10分
①当时,有

,同理, 
∴ 由的单调性知   
从而有,符合题设.   11分
②当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求上的最大值;
(2)若直线为曲线的切线,求实数的值;
(3)当时,设,且,若不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3ax2+bx.
(1)若a=2b,试问函数f(x)能否在x=-1处取到极值?若有可能,求出实数a,b的值;否则说明理由.
(2)若函数f(x)在区间(-1,2),(2,3)内各有一个极值点,试求w=a-4b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调递增区间;
(2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln(x+1)-x2x.
(1)若关于x的方程f(x)=-xb在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(2)证明:对任意的正整数n,不等式2++…+ >ln(n+1)都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3x2g(x)=aln xa∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=aln xax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数yf(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3x2 (f′(x)是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×< (n≥2,n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线lyxa(a≠0)和曲线Cyx3x2+1相切,求切点
的坐标及a的值.

查看答案和解析>>

同步练习册答案