精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的单调递增区间;
(2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.

(1)当时,的单调递增区间为;当的单调递增区间为;(2)函数不存在“中值相依切线”.

解析试题分析:(1)当时,分两种情况分别进行分析,当时, , 显然函数上单调递增;当时, ,令,解得;所以当时,函数上单调递增;当时,函数上单调递增;(2)先设是曲线上的不同两点,求出的表达式化简得到:,再经过求导分析得出函数不存在“中值相依切线”.
试题解析:(1)函数的定义域是. 由已知得, 
时, , 显然函数上单调递增;
时, ,令,解得
函数上单调递增,
综上所述:①当时,函数上单调递增;
②当时,函数上单调递增;
(2)假设函数存在“中值相依切线”
是曲线上的不同两点,且
.
  
曲线在点处的切线斜率  
依题意得: 
化简可得: , 即= 
 (),上式化为:,
.  令,
.
因为,显然,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的最小值;
(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围;
(3)求证:(其中)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 (其中是自然对数的底)
(1) 若处取得极值,求的值;
(2) 若存在极值,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象与轴异于原点的交点M处的切线为轴的交点N处的切线为, 并且平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,并且使得不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)确定yf(x)在(0,+∞)上的单调性;
(2)若a>0,函数h(x)=xf(x)-xax2在(0,2)上有极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3x2axax∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-aln xx(a≠0),
(1)若曲线yf(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案