| A. | (0,$\frac{ln3}{3}$) | B. | (0,$\frac{ln3}{3}$] | C. | ($\frac{ln3}{3}$,$\frac{1}{e}$) | D. | [$\frac{ln3}{3}$,$\frac{1}{e}$) |
分析 画出函数y=|lnx|的图象,然后借助于图象,结合在区间(0,3]上有三个零点,进行判断.
解答 解:作出函数y=|lnx|与y=ax的图象如图示:![]()
当a≤0时,显然,不合乎题意,
当a>0时,当x∈(0,1]时,存在一个零点,
当x>1时,f(x)=lnx,
可得g(x)=lnx-ax,(x∈(1,3])
g′(x)=$\frac{1}{x}$-a=$\frac{1-ax}{x}$,
若g′(x)<0,可得x>$\frac{1}{a}$,g(x)为减函数,
若g′(x)>0,可得x<$\frac{1}{a}$,g(x)为增函数,
此时f(x)必须在[1,3]上有两个交点,
∴$\left\{\begin{array}{l}{g(\frac{1}{a})>0}\\{g(3)≤0}\\{g(1)≤0}\end{array}\right.$,解得,$\frac{ln3}{3}$≤a<$\frac{1}{e}$,
综上,函数f(x)=|lnx|-ax在区间(0,3]上有三个零点时,实数a的取值范围是[$\frac{ln3}{3}$,$\frac{1}{e}$),
故选:D.
点评 本题考查函数零点的判定定理,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | -$\frac{3}{2}$i | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({2,\frac{2π}{3}})$ | B. | (2,3) | C. | $({2,\frac{5π}{6}})$ | D. | $({2,\frac{3π}{4}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,0,-1} | B. | {1,-1} | C. | {-1} | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com