精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|0<log2(3x-5)<2},集合$B=\left\{{x\left|{sinx>\frac{{\sqrt{3}}}{2}}\right.}\right\}$,那么A∩B=(  )
A.$({2,\frac{2π}{3}})$B.(2,3)C.$({2,\frac{5π}{6}})$D.$({2,\frac{3π}{4}})$

分析 先分别求出集合A和集合B,由此利用交集定义能求出A∩B.

解答 解:∵集合A={x|0<log2(3x-5)<2}={x|2<x<3},
集合$B=\left\{{x\left|{sinx>\frac{{\sqrt{3}}}{2}}\right.}\right\}$={x|$\frac{π}{3}$+2kπ<x<$\frac{2π}{3}+2kπ$,k∈Z},
∴A∩B={x|2<x<$\frac{2π}{3}$}=(2,$\frac{2π}{3}$).
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意对数函数和三角函烽的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}的前n项和为Sn,若a3=5,a5=3,则an=8-n,S7=28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在△ABC中,角A,B,C对应的边分别为a,b,c,且a=2,b=3,cosB=$\frac{1}{3}$.
(1)求边c的值;
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简$\frac{tan12°-\sqrt{3}}{sin12°cos24°}$=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a=log${\;}_{\frac{1}{2}}$3,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=|lnx|-ax在区间(0,3]上有三个零点,则实数a的取值范围是(  )
A.(0,$\frac{ln3}{3}$)B.(0,$\frac{ln3}{3}$]C.($\frac{ln3}{3}$,$\frac{1}{e}$)D.[$\frac{ln3}{3}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A(-1,0),B(2,3),则|AB|=(  )
A.3B.$\sqrt{2}$C.$3\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动圆C过定点F($\frac{1}{2}$,0),且始终保持与直线l:x=-$\frac{1}{2}$相切.
(1)求⊙C的圆心的轨迹方程;
(2)设定点A(a,0),点Q为曲线C上动点,求点A到点Q距离的最小值d(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x,y都是区间[-$\frac{π}{2}$,$\frac{π}{2}$]内任取的一个实数,则使得y≤cosx的取值的概率是(  )
A.$\frac{4}{{π}^{2}}$B.$\frac{2}{π}$+$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{2}{{π}^{2}}$+$\frac{1}{2}$

查看答案和解析>>

同步练习册答案