精英家教网 > 高中数学 > 题目详情
如图,长方体ABCD?A1B1C1D1中,AB=3,BC=2,BB1=1,由A到C1在长方体表面上的最短距离为多少?
A到C1在长方体表面上的最短距离为.
分析:解本题可将长方体表面展开,利用在平面内两点间的线段长是两点间的最短距离来解答.通过展开表面,将空间问题转化为平面问题.
如图1展开:

图1

如图2展开:

图2

如图3展开:

图3
.
由此A到C1在长方体表面上的最短距离为.
知识点:简单几何体和球
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

一扇形铁皮AOB,半径OA="72" cm,圆心角∠AOB=60°.现剪下一个扇环ABCD作圆台形容器的侧面,并从剩下的扇形OCD内剪下一个最大的圆刚好作容器的下底(圆台的下底面大于上底面),则OC的长为______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

桌子上放着一个长方体和圆柱(如图1-2-30),下列图1-2-31所示三幅图分别是_______.

图1-2-30

图1-2-31

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


观察下列几何体,分析它们是由哪些基本几何体组成的,并说出主要结构特征.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面平面是夹在两平行平面间的两条线段,内,内,点分别在上,且.求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m是平面的一条斜线,点A是平面外的任意点,是经过点A的一条动直线,那么下列情形中可能出现的是                                                       (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)在五棱锥中,PA=AB=AE=2,PB=PE=, BC=DE=,.(Ⅰ)求证:PA平面(Ⅱ)求二面角 的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间四边形的两条对角线的长所成的角为分别是的中点,求四边形的面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥S-ABC的底面是正三角形,点A在侧面SBC上的射影H是△SBC的垂心,SA=a,则此三棱锥体积最大值是
A.B.C.D.

查看答案和解析>>

同步练习册答案