精英家教网 > 高中数学 > 题目详情
设命题p:f(x)=
2x-m
在区间(2,+∞)上是减函数;命题q:x1,x2是x2-ax-2=0(a∈[-1,1])的两个实根,不等式m2+5m+3≥|x1-x2|对任意a∈[-1,1]都成立.若“p且q为真”,试求实数m的取值范围.
分析:分别求出命题p,q为真命题的等价条件,然后利用“p且q”是真命题,求实数a的取值范围即可.
解答:解:因为f(x)=
2
x-m
在区间(2,+∞)上是减函数;
所以m≤2,即命题p:m≤2…(3分)
命题q:|x1 -x2|=
(x1 +x2)2-4x1 x2
=
a2+8
≤3

∴m2+5m+3≥3,∴m≤-5或m≥0,即q:m≤-5或m≥0…(8分)
若“p且q为真”,则p真且q为真,
m≤2
m≤-5 ,或m≥0

即m∈(-∞,-5]∪[0,2]…(12分)
点评:本题主要考查全称命题和特称命题的应用以及复合命题的真假关系,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:f(x)=ax是减函数,命题q:关于x的不等式x2+x+a>0的解集为R,如果“p或q”为真命题,“p且q”为假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg[(a2-1)x2+(a+1)x+1].设命题p:“f(x)的定义域为R”;命题q:“f(x)的值域为R”
(1)若命题p为真,求实数a的取值范围;
(2)若命题q为真,求实数a的取值范围;
(3)?p是q的什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:f(x)=
2x-m
在区间(1,+∞)上是减函数;命题q;x1x2是方程x2-ax-2=0的两个实根,不等式m2+5m-3≥|x1-x2|对任意实数α∈[-1,1]恒成立;若¬p∧q为真,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:f(x)=ax(a>0,a≠1)是减函数,命题q:关于x的不等式x2+x+a>0的解集为R,如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案