精英家教网 > 高中数学 > 题目详情
14.角α的终边落在射线y=2x,(x≥0)上.则cosα的值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

分析 利用任意角三角函数的定义求解.

解答 解:∵角α的终边落在射线y=2x,(x≥0)上,
∴x=1时,y=2,r=$\sqrt{5}$,
∴cosα=$\frac{x}{r}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
故选:A.

点评 本题考查余弦函数值的求法,是基础题,解题时要认真审题,注意任意角三角函数的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过点F作双曲线的一条渐近线的垂线,垂足为A,交另一条渐近线于点B.若3$\overrightarrow{FA}$=$\overrightarrow{FB}$,则此双曲线的离心率为(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线(2+λ)x-(1-2λ)y-(6+3λ)=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上点到点F的最小距离为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知圆O:x2+y2=1,直线l:mx+ny=1,试证明:当点P(m,n)在椭圆C上运动时,直线l与圆C恒相交,并求直线l被圆O所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义[x]为不超过x的最大整数,如[3.3]=3,[-1.8]=-2,设f(x)=x-[x],x∈R,要使得方程f(x)=ax恰有2015个实数解,则实数a的取值范围是(  )
A.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2015}$,$\frac{1}{2014}$)B.(-$\frac{1}{2014}$,-$\frac{1}{2015}$)∪($\frac{1}{2015}$,$\frac{1}{2014}$)
C.(-$\frac{1}{2013}$,-$\frac{1}{2014}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)D.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.α=-1,则α的终边所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.角α的终边在第二、四象限的角平分线上,则角α的集合为{α|α=kπ+$\frac{3π}{4}$,k∈z }(用弧度制表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=$\left\{\begin{array}{l}{x+k(1{-a}^{2}),x≥0}\\{{x}^{2}-4x{+(3-a)}^{2},x<0}\end{array}\right.$,a∈R,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是(-∞,0]∪[8,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l过(0,3),且与直线x+y+1=0垂直,则直线l的方程是(  )
A.x+y-2=0B.x-y+3=0C.x+y-3=0D.x-y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.1+x1+x2+…+xn(x≠0)=$\left\{\begin{array}{l}{n+1,x=1}\\{\frac{1-{x}^{n+1}}{1-x},x≠0,1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案