精英家教网 > 高中数学 > 题目详情
4.F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过点F作双曲线的一条渐近线的垂线,垂足为A,交另一条渐近线于点B.若3$\overrightarrow{FA}$=$\overrightarrow{FB}$,则此双曲线的离心率为(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

分析 由题意得右焦点F(c,0),设一渐近线OA的方程为y=-$\frac{b}{a}$x,则另一渐近线OB的方程为y=$\frac{b}{a}$x,由常州的条件可得FA的方程,代入渐近线方程,可得A,B的横坐标,由向量共线的坐标表示,结合离心率公式,解方程可得.

解答 解:由题意得右焦点F(c,0),
设一渐近线OA的方程为y=-$\frac{b}{a}$x,
则另一渐近线OB的方程为y=$\frac{b}{a}$x,
由FA的方程为y=$\frac{a}{b}$(x+c),联立方程y=-$\frac{b}{a}$x,
可得A的横坐标为-$\frac{{a}^{2}}{c}$,
由FA的方程为y=$\frac{a}{b}$(x+c),联立方程y=$\frac{b}{a}$x,
可得B的横坐标为$\frac{{a}^{2}c}{{b}^{2}-{a}^{2}}$.
由3$\overrightarrow{FA}$=$\overrightarrow{FB}$,
可得3(-$\frac{{a}^{2}}{c}$+c)=$\frac{{a}^{2}c}{{b}^{2}-{a}^{2}}$+c,
即为-$\frac{3{a}^{2}}{c}$+2c=$\frac{{a}^{2}c}{{c}^{2}-2{a}^{2}}$,
由e=$\frac{c}{a}$,可得-$\frac{1}{{e}^{2}}$+2=$\frac{1}{{e}^{2}-2}$,
即有e4-4e2+3=0,解得e2=3或1(舍去),
即为e=$\sqrt{3}$.
故选:D.

点评 本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,同时考查向量的共线的坐标表示,求得点A、B的横坐标是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设A1(-2$\sqrt{2}$,0),A2(2$\sqrt{2}$,0),P是动点,且直线A1P与A2P的斜率之积等于-$\frac{1}{2}$.
(1)求动点P的轨迹E的方程;
(2)设轨迹E的左右焦点分别为F1,F2,作两条互相垂直的直线MF1和MF2与轨迹E的交点分别为A,B和C,D,求证:$\frac{1}{|AB|}$+$\frac{1}{|CD|}$恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b为正实数,直线x+y+a=0与圆(x-b)2+(y-1)2=2相切,则$\frac{(3-2b)^{2}}{2a}$的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,且θ为第四象限角,则tanθ的值-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)在区间[-$\frac{π}{2}$,$\frac{4π}{3}$]上单调递增,则实数ω的最大值为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,an+1+an=2n+1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{\frac{lnx}{2-x}}$的定义域为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}中,a1=1,an=nan-1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.角α的终边落在射线y=2x,(x≥0)上.则cosα的值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案