精英家教网 > 高中数学 > 题目详情
13.已知数列{an}中,a1=1,an=nan-1,求an

分析 通过变形可知$\frac{{a}_{n}}{{a}_{n-1}}$=n,累乘计算即得结论

解答 解:∵an=nan-1
∴$\frac{{a}_{n}}{{a}_{n-1}}$=n,
∴$\frac{{a}_{2}}{{a}_{1}}$=2,$\frac{{a}_{3}}{{a}_{2}}$=3,…,
累乘得$\frac{{a}_{n}}{{a}_{1}}$=2×3×4×…×n,
∴an=1×2×3×4×…×n=n!.

点评 本题考查数列的通项,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.幂函数y=xa在x=1处切线方程为y=-4x,则a的值为(  )
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过点F作双曲线的一条渐近线的垂线,垂足为A,交另一条渐近线于点B.若3$\overrightarrow{FA}$=$\overrightarrow{FB}$,则此双曲线的离心率为(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知2c=2acosB+b.
(1)求∠A的大小;
(2)若c=2b,求证:∠C=3∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在平面直角坐标系xOy中,一单位圆圆心的初始位置在(0,1),此时圆上点P的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(a,1)时,则$\overrightarrow{OP}$的坐标为(a-sina,1-cosa).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-2=0和l2:x+y-6=0上移动,则AB中点M到原点距离的最小值为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线(2+λ)x-(1-2λ)y-(6+3λ)=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上点到点F的最小距离为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知圆O:x2+y2=1,直线l:mx+ny=1,试证明:当点P(m,n)在椭圆C上运动时,直线l与圆C恒相交,并求直线l被圆O所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义[x]为不超过x的最大整数,如[3.3]=3,[-1.8]=-2,设f(x)=x-[x],x∈R,要使得方程f(x)=ax恰有2015个实数解,则实数a的取值范围是(  )
A.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2015}$,$\frac{1}{2014}$)B.(-$\frac{1}{2014}$,-$\frac{1}{2015}$)∪($\frac{1}{2015}$,$\frac{1}{2014}$)
C.(-$\frac{1}{2013}$,-$\frac{1}{2014}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)D.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l过(0,3),且与直线x+y+1=0垂直,则直线l的方程是(  )
A.x+y-2=0B.x-y+3=0C.x+y-3=0D.x-y+2=0

查看答案和解析>>

同步练习册答案