| A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
分析 由条件利用正弦函数的增区间可得ω•$\frac{4π}{3}$-$\frac{π}{6}$≤$\frac{π}{2}$,且ω•(-$\frac{π}{2}$)-$\frac{π}{6}$≥-$\frac{π}{2}$,求得ω的范围,可得实数ω的最大值.
解答 解:函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)在区间[-$\frac{π}{2}$,$\frac{4π}{3}$]上单调递增,
则ω•$\frac{4π}{3}$-$\frac{π}{6}$≤$\frac{π}{2}$,且ω•(-$\frac{π}{2}$)-$\frac{π}{6}$≥-$\frac{π}{2}$,求得ω≤$\frac{1}{2}$,
则实数ω的最大值为$\frac{1}{2}$,
故选:D.
点评 本题主要考查正弦函数的增区间,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | B. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$ | ||
| C. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$或$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | D. | $\frac{{4{y^2}}}{3}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | $\frac{{y}^{2}}{3}$-x2=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | y2-$\frac{{x}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com