精英家教网 > 高中数学 > 题目详情

分别是椭圆的左右焦点,上一点且轴垂直,直线的另一个交点为
(1)若直线的斜率为,求的离心率;
(2)若直线轴上的截距为,且,求

(1);(2)

解析试题分析:(1)由已知得,故直线的斜率为,结合得关于的方程,解方程得离心率的值;(2)依题意,直线轴的交点是线段的中点.故,①
又因为,得,从而得三个点坐标的关系,将点的坐标表示出来代入椭圆方程的,得另一个关于的方程并联立方程①求即可.
(1)根据及题设知.将代入,解得
(舍去).故的离心率为
(2)由题意,原点的中点,轴,所以直线轴的交点是线段的中点.故,即.①由.设,由题意得,,则代入C的方程,得,②将①及代入②得
.解得,故
考点:椭圆的标准方程和简单几何性质;2、中点坐标公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xoy中,已知椭圆C:=1(a>b≥1)的离心率e=,且椭圆C上的点到点Q (0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B.
(1)求椭圆C的方程。
(2)设P为椭圆上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:·=0;
(3)求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线与椭圆交于两点(不是椭圆的顶点).点在椭圆上,且,直线轴、轴分别交于两点.
(i)设直线的斜率分别为,证明存在常数使得,并求出的值;
(ii)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,已知双曲线的右焦点,点分别在的两条渐近线上,轴,(为坐标原点).

(1)求双曲线的方程;
(2)过上一点的直线与直线相交于点,与直线相交于点,证明点上移动时,恒为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆)的左、右焦点为,右顶点为,上顶点为.已知
(1)求椭圆的离心率;
(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案