设椭圆()的左、右焦点为,右顶点为,上顶点为.已知.
(1)求椭圆的离心率;
(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.
(1);(2)直线的斜率为或.
解析试题分析:(1)设椭圆的右焦点的坐标为,由已知,可得,结合,可得,从而可求得椭圆的离心率;(2)在(1)的基础上,可先利用及数量积的坐标运算求出点的坐标,再求出以线段为直径的圆的方程(圆心坐标和半径),最后设经过原点的与该圆相切的直线的方程为,由圆心到切线的距离等于半径,列方程,解方程即可得求得直线的斜率.
(1)设椭圆的右焦点的坐标为.由,可得,又,则,∴椭圆的离心率.
(2)由(1)知,,故椭圆方程为.设.由,,有,.由已知,有,即.又,故有 ①
又∵点在椭圆上,故 ②
由①和②可得.而点不是椭圆的顶点,故,代入①得,即点的坐标为.设圆的圆心为,则,,进而圆的半径.设直线的斜率为,依题意,直线的方程为.由与圆相切,可得,即,整理得,解得.∴直线的斜率为或.
考点:1.椭圆的标准方程和几何性质;2.直线和圆的方程;3.直线和圆的位置关系.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线的参数方程为(为参数,).
(1)写出直线的直角坐标方程;
(2)求直线与曲线的交点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
无论为任何实数,直线与双曲线恒有公共点.
(1)求双曲线的离心率的取值范围;
(2)若直线过双曲线的右焦点,与双曲线交于两点,并且满足,求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.
(1)求的值;
(2)过点的直线与分别交于(均异于点),若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.
(1)求轨迹为的方程
(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知P是圆上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为.
(1)求椭圆的标准方程;
(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.
(1)求椭圆的标准方程;
(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com