精英家教网 > 高中数学 > 题目详情

如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.

(1)求的值;
(2)过点的直线分别交于(均异于点),若,求直线的方程.

(1);(2)

解析试题分析:(1)由上半椭圆和部分抛物公共点为,得,设的半焦距为,由,解得
(2)由(1)知,上半椭圆的方程为,易知,直线轴不重合也不垂直,故可设其方程为,并代入的方程中,整理得:
由韦达定理得,又,得,从而求得,继而得点的坐标为,同理,由得点的坐标为,最后由,解得,经检验符合题意,故直线的方程为.
试题解析:(1)在方程中,令,得
方程中,令,得
所以
的半焦距为,由,解得
所以
(2)由(1)知,上半椭圆的方程为
易知,直线轴不重合也不垂直,设其方程为
代入的方程中,整理得:
  (*)
设点的坐标
由韦达定理得
,得,从而求得
所以点的坐标为
同理,由得点的坐标为


,即
,解得
经检验,符合题意,
故直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点,且满足,其中为正常数. 当点恰为椭圆的右顶点时,对应的.
(1)求椭圆的离心率;
(2)求的值;
(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线与椭圆交于两点(不是椭圆的顶点).点在椭圆上,且,直线轴、轴分别交于两点.
(i)设直线的斜率分别为,证明存在常数使得,并求出的值;
(ii)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个顶点在抛物线上,为抛物线的焦点,点的中点,
(1)若,求点的坐标;
(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆)的左、右焦点为,右顶点为,上顶点为.已知
(1)求椭圆的离心率;
(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设有双曲线,F1,F2是其两个焦点,点M在双曲线上.
(1)若∠F1MF2=90°,求△F1MF2的面积;
(2)若∠F1MF2=60°,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?
(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的焦点在x轴上,左右顶点分别为,上顶点为B,抛物线分别以A,B为焦点,其顶点均为坐标原点O,相交于 直线上一点P.
(1)求椭圆C及抛物线的方程;
(2)若动直线与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,过的左焦点的直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

同步练习册答案