精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,正视图为正方形,俯视图为半圆,侧视图为矩形,则其表面积为
 
考点:由三视图求面积、体积
专题:计算题
分析:原几何体为圆柱的一半,且高为2,底面圆的半径为1,表面积由上下两个半圆及正面的正方形和侧面圆柱面积构成,分别求解相加可得答案.
解答: 解:由三视图可知:原几何体为圆柱的一半,(沿中轴线切开)
由题意可知,圆柱的高为2,底面圆的半径为1,
故其表面积为S=2×
1
2
π×12+2×2+
1
2
×2π×1×2=3π+4
故答案为:3π+4
点评:本题考查由几何体的三视图求面积,由三视图得出原几何体的形状和数据是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是△ABC所在平面外一点,PA⊥PC,PB⊥PC,PA⊥PB.求证:P在面ABC上的射影H是△ABC的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2.若对任意的x∈[a,a+2],不等式f(x+a)≥f(
2
x)
恒成立,则实数a的取值范围是(  )
A、a≤0
B、a≥
2
C、a≤
2
D、a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点F(0,
1
4
),直线l:y=-
1
4
,P为平面内动点,过点P作直线l的垂线,垂足为M,且
MP
MF
=
FP
FM

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若曲线E与圆Q:x2+(y-4)2=r2(r>0)有A、B、C、D四个交点,求四边形ABCD面积取到最大值时圆Q的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别是a,b,c,若a2=b2+bc,sinC=2sinB,则tanA的值为(  )
A、
3
B、
3
3
C、
3
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若M,N分别为CC1,AB的中点,求证:CN∥平面AB1M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|a-
b
x
|,a>0,b>0,x≠0,且满足:函数y=f(x)的图象与直线y=1有且只有一个交点.
(1)求实数a的值;
(2)若关于x的不等式f(x)<4x-1的解集为(
1
2
,+∞)
,求实数b的值;
(3)在(2)成立的条件下,是否存在m,n∈R,m<n,使得f(x)的定义域和值域均为[m,n],若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.若F是AC的中点,连接PF,EF.
(1)求证:AC⊥平面PEF.
(2)求直线PC与平面PAB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果存在非零的常数T,使得an+T=an对于任意正整数n均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+2=|xn+1-xn|(x∈N*),若x1=1,x2=a(a≤1,a≠0),当数列{xn}的周期为3时,则数列{xn}的前2011项的和s2011为(  )
A、669B、670
C、1338D、1341

查看答案和解析>>

同步练习册答案