精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别是a,b,c,若a2=b2+bc,sinC=2sinB,则tanA的值为(  )
A、
3
B、
3
3
C、
3
2
D、
1
3
考点:正弦定理,两角和与差的正弦函数,余弦定理
专题:计算题,解三角形
分析:根据正弦定理,结合sinC=2sinB得c=2b,代入题中平方关系式算出a2=3b2,得到b2+a2=c2,可得△ABC是以C为直角的直角三角形,再结合正切在直角三角形中的定义,即可算出tanA的值.
解答: 解:∵sinC=2sinB,∴由正弦定理,得c=2b
代入a2=b2+bc,得a2=b2+2b2=3b2,可得a=
3
b
∴b2+a2=4b2=c2,可得△ABC中∠C=90°
因此,tanA=
a
b
=
3

故选:A
点评:本题给出三角形中的边的平方关系和角的正弦之间的关系,求tanA的值.着重考查了正弦定理、勾股定理的逆定理和正切函数在直角三角形中的定义等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x+
3
4
,x≥2
log2x,0<x<2
,若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是(  )
A、(
3
4
,1)
B、(0,
3
4
C、(-∞,1)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

有一枚正方体骰子,六个面分别写1、2、3、4、5、6的数字,规定“抛掷该枚骰子得到的数字是抛掷后,面向上的那一个数字”.已知a和b是先后抛掷该枚骰子得到的数字,函数f(x)=ax2+2bx+1(x∈R)
(1)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,使函数y=f(x)有零点的概率;
(2)求函数y=f(x)在区间(-3,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,公差d≠0且S3+S5=50,a1,a4,a13成等比数列.则数列{an}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视合为提升收视率,推出大型明星跳水竞技节目《星跳水立方》.由4位奥运跳水冠军萨乌丁、熊倪、高敏、胡佳任教练,分别带领一个队进行竞赛,参加竞赛的队伍按照抽签方式决定出场顺序.
(I)求竞赛中萨乌丁队、熊倪队两支队伍恰好排在前两位的概率;
(Ⅱ)若竞赛中萨乌丁队、熊倪队之间间隔的队伍数记为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,正视图为正方形,俯视图为半圆,侧视图为矩形,则其表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
在极坐标系中,曲线C1和C2的参数方程分别为sinθ+cosθ=
3
ρ
,ρ=2cosθ
,若点P(x,y)为C2对应直角坐标系中图形上一点,点A为C1对应直角坐标系中图形上一点,则|PA|最小值=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-5x+4=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+4=0},若A∪B=A,A∩C=C,求实数a,m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,
(1)求证:CN∥平面AMD;
(2)求面AMN与面NBC所成二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案