¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÏòÁ¿
AB
Óë
CD
Êǹ²ÏßÏòÁ¿£¬ÔòA¡¢B¡¢C¡¢DËÄµã±ØÔÚÒ»Ö±ÏßÉÏ£»
¢ÚÒÑÖª
e
Êǵ¥Î»ÏòÁ¿£¬ÇÒ|
a
+
e
|=|
a
-2
e
|£¬Ôò
a
ÔÚ
e
·½ÏòÉϵÄͶӰΪ
1
2
£»
¢ÛÈôSnÊǵȲîÊýÁÐ{an}µÄǰnÏîºÍ£¬ÔòÈýµã£¨10£¬
S10
10
£©¡¢£¨100£¬
S100
100
¡¢£¨110£¬
S110
110
£©¹²Ïߣ»
¢ÜÈôSnÊǵȲîÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒa1=-11£¬a3+a7=-6£¬ÔòS1¡¢S2¡¢¡­¡¢SnÕân¸öÊýÖбØÈ»´æÔÚÒ»¸ö×î´óÖµ£»
ÆäÖÐÕýÈ·ÃüÌâµÄÊÇ
 
£®
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,Æ½ÃæÏòÁ¿¼°Ó¦ÓÃ
·ÖÎö£ºÓɹ²ÏßÏòÁ¿µÄ¸ÅÄ¼´¿ÉÅжϢ٣»Á½±ßƽ·½£¬ÔËÓÃÏòÁ¿µÄÄ£µÈÓÚÏòÁ¿µÄƽ·½£¬ÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍͶӰµÄ¸ÅÄ¼´¿ÉÅжϢڣ»ÓɵȲîÊýÁеÄÇóºÍ¹«Ê½£¬ÍƳöÊýÁÐ{
Sn
n
}ÊǵȲîÊýÁУ¬ÓÉͼÏó¼´¿ÉÅжϢۣ»Çó³öͨÏʽ£¬ÅжÏÊýÁеĵ¥µ÷ÐÔ£¬Çó³ö×îÖµ£¬¼´¿ÉÅжϢܣ®
½â´ð£º ½â£º¢ÙÏòÁ¿
AB
Óë
CD
Êǹ²ÏßÏòÁ¿£¬ÔòËüÃÇµÄÆðµã²»Ò»¶¨Ïàͬ£¬¹ÊA£¬B£¬C£¬D²»Ò»¶¨¹²Ïߣ¬¹Ê¢Ù´í£»
¢ÚÒÑÖª
e
Êǵ¥Î»ÏòÁ¿£¬ÇÒ|
a
+
e
|=|
a
-2
e
|£¬ÔòÁ½±ßƽ·½µÃ£¬
a
e
=
1
2
£¬|
a
|•cos¦È=
1
2
£¬¼´
a
ÔÚ
e
·½ÏòÉϵÄͶӰΪ
1
2
£¬¹Ê¢ÚÕýÈ·£»
¢ÛÈôSnÊǵȲîÊýÁÐ{an}µÄǰnÏîºÍ£¬ÔòSn=na1+
n(n-1)
2
d
£¬
Sn
n
=a1+
d
2
£¨n-1£©£¬¼´ÊýÁÐ{
Sn
n
}ÊǵȲîÊýÁУ¬ÔòËüÃDZíʾµÄͼÏóÊÇÒ»Ö±ÏßÉϹÂÁ¢µÄµã£¬¹ÊÈýµã£¨10£¬
S10
10
£©¡¢£¨100£¬
S100
100
¡¢£¨110£¬
S110
110
£©¹²Ïߣ»¼´¢ÛÕýÈ·£»
¢ÜÈôSnÊǵȲîÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒa1=-11£¬a3+a7=-6£¬ÔòÓÉͨÏʽµÃ£¬2a1+8d=-6£¬d=2£¬ÔòÊýÁÐ{an}ÊǵÝÔöµÄÊýÁУ¬ÇÒan=2n-13£¬a6£¼0£¬a7£¾0£¬¹ÊS6×îС£¬¹Ê¢Ü´í£®
¹Ê´ð°¸Îª£º¢Ú¢Û
µãÆÀ£º±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÎªÔØÌ壬¿¼²éÆ½ÃæÏòÁ¿µÄ¹ØÏµºÍÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Òå¼°ÏòÁ¿µÄͶӰ£¬Í¬Ê±¿¼²éµÈ²îÊýÁеÄͨÏîºÍÇóºÍ¹«Ê½£¬¼°ÊýÁеĵ¥µ÷ÐÔºÍ×îÖµÎÊÌ⣬ÊÇÒ»µÀ×ÛºÏÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

f£¨x£©=2cos2x-2acosx-1-2aµÄ×îСֵΪg£¨a£©£¬a¡ÊR
£¨1£©Çóg£¨a£©£»
£¨2£©Èôg£¨a£©=
1
2
£¬Çóa¼°´Ëʱf£¨x£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=x2-ax+b£¬a£¬b¡ÊR£®Èôf£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬1£©Éϵ¥µ÷µÝ¼õ£¬ÔòaµÄȡֵ·¶Î§
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf£¨x£©=x3+ax2+bx+a2£¬ÔÚx=1ʱÓм«Öµ4£¬ÔòabµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýy=
1-cosx
2sinx-1
+log2£¨2cosx+
2
£©µÄ¶¨ÒåÓòÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¬F·Ö±ðΪÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×󶥵㡢ÓÒ½¹µã£¬CÉϵĵãPÂú×ãPF¡ÍxÖᣬÉäÏßAP½»CµÄÓÒ×¼ÏßÓÚµãQ£¬ÈôÖ±ÏßQA¡¢QO¡¢QFµÄбÂÊ£¬ÒÀ´Î³ÉµÈ²îÊýÁУ¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
£¬
b
µÄ¼Ð½ÇΪ
3¦Ð
4
£¬
a
=£¨-1£¬1£©£¬|
b
|=2£¬Ôò|
a
+2
b
|=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf£¨x£©=|x-a|ÔÚÇø¼ä£¨-¡Þ£¬1]ÄÚΪ¼õº¯Êý£¬ÔòaµÄ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf(x)=e-x
x
Ôò£¨¡¡¡¡£©
A¡¢½öÓÐ×îСֵ
1
2e
B¡¢½öÓÐ×î´óÖµ
1
2e
C¡¢¼ÈÓÐ×îСֵ0£¬Ò²ÓÐ×î´óÖµ
1
2e
D¡¢¼ÈÎÞ×î´óÖµ£¬Ò²ÎÞ×îСֵ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸