精英家教网 > 高中数学 > 题目详情

【题目】大学毕业生小王相应国家自主创业的号召,利用银行小额无息贷款开办了一家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件,市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月多卖20件,为获得更大的利润,现将饰品售价调整为(元/件)(即售价上涨,即售价下降),每月饰品销售为(件),月利润为(元).

(1)直接写出之间的函数关系式;

(2)如何确定销售价格才能使月利润最大?求最大月利润;

(3)为了使每月利润不少于6000元,应如何控制销售价格?

【答案】(1);(2)当销售价格为66元时,利润最大,最大利润为6250元;(3)销售价格控制在55元到70元之间才能使每月利润不少于6000元.

【解析】

试题分析:(1)直接根据题意售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,进而得出等量关系;(2)利用每件利润×销量总利润,进而利用配方法求出即可;(3)利用函数图象结合一元二次方程的解法得出符合题意的答案.

试题解析:(1)由题意可得,

(2)由题意可得:

化简得:

由题意可知应取整数,故当时,

故当销售价格为66元时,利润最大,最大利润为6250元.

(3)由题意,如图,令

解得:

故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)是R上的任意函数,则下列叙述正确的是(
A.f(x)f(﹣x)是奇函数
B.f(x)|f(﹣x)|是奇函数
C.f(x)﹣f(﹣x)是偶函数
D.f(x)+f(﹣x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】总体由编号为01,02,…,19,20的20个个体组成。利用下面的随机数表选取7个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )

7816 6572 0802 6314 0702 4369 9728 0198

3204 9234 4935 8200 3623 4869 6938 7481

A. 08 B. 07 C. 01 D. 06

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.

(Ⅰ要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?

)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4个不同的球,4个不同的盒子,把球全部放入盒内.

1恰有1个盒不放球,共有几种放法?

2恰有1个盒内有2个球,共有几种放法?

3恰有2个盒不放球,共有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在四棱锥中,的中点。

(1)求证:

(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处的切线方程为,求实数的值;

(2)讨论函数的单调性;

(3)若,且对任意,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂引进一条先进生产线生产某种化工产品, 生产的总成本万元与年产之间的函数关系式可以近似地表示为,已知此生产线年产最大为.

(1)求年产为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

(2)若毎吨产品平均出厂价为万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某天甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素的含量(单位:毫克).当产品中的微量元素满足时,该产品为优等品.已知甲厂该天生产的产品共有98件,下表是乙厂的5件产品的测量数据:

编号

1

2

3

4

5

169

178

166

175

180

75

80

77

70

81

(1)求乙厂该天生产的产品数量

(2)用上述样本数据估计乙厂该天生产的优等品的数量

(3)从乙厂抽出取上述5件产品中,随机抽取2件,求抽取的2件产品中优等品至少有1件的概率

查看答案和解析>>

同步练习册答案