分析 (1)由an+2Sn•Sn-1=0(n≥2),可得Sn-Sn-1+2Sn•Sn-1=0,化为$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,即可证明.
(2)由(1)可得:${S}_{n}=\frac{1}{2n}$.即可得出.
解答 (1)证明:∵an+2Sn•Sn-1=0(n≥2),∴Sn-Sn-1+2Sn•Sn-1=0,化为$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,
∴{$\frac{1}{{S}_{n}}$}是等差数列,首项为2,公差为2;
(2)解:由(1)可得:$\frac{1}{{S}_{n}}$=2+2(n-1)=2n,
∴${S}_{n}=\frac{1}{2n}$.
∴数列{an}的前2011项的和=$\frac{1}{2×2011}$=$\frac{1}{4022}$.
点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| ξ | 0 | 1 | 2 |
| P | $\frac{1}{2}$-p | p | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{5}{4}$) | B. | (1,$\frac{5}{3}$) | C. | [1,$\frac{5}{4}$) | D. | [1,$\frac{5}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{241}{2401}$ | B. | $\frac{1105}{2401}$ | C. | $\frac{1}{2}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com