精英家教网 > 高中数学 > 题目详情
2.已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB+bcosA=2ccosC.
(1)求角C的值;
(2)若c=4,a+b=7,求S△ABC的值.

分析 (1)利用正弦定理与和差化积即可得出.
(2)利用余弦定理可得ab,再利用三角形面积计算公式即可得出.

解答 解:(1)∵acosB+bcosA=2ccosC,由正弦定理可得:sinAcosB+sinBcosA=2sinCcosC.
∴sinC=sin(A+B)=2sinCcosC,
∵sinC≠0,∴cosC=$\frac{1}{2}$,
∵C∈(0,π),∴$C=\frac{π}{3}$.
(2)由余弦定理:c2=a2+b2-2abcosC,
即${4^2}={(a+b)^2}-2ab-2abcos\frac{π}{3}$,
∴ab=11,
∴${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}×11×\frac{{\sqrt{3}}}{2}=\frac{{11\sqrt{3}}}{4}$.

点评 本题考查了正弦定理余弦定理、和差公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若2sinA+sinB=$\sqrt{3}$sinC,则角A的取值范围是(0,$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=x4-ax2-bx-1在x=1处有极值,则9a+3b的最小值为(  )
A.4B.9C.18D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3ax+{a}^{2}-3,(x<0)}\\{2{e}^{x}-(x-a)^{2}+3,(x>0)}\end{array}\right.$,a∈R.
(Ⅰ)若函数y=f(x)在x=1处取得极值,求a的值;
(Ⅱ)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围;
(Ⅲ)当x≥2时,记g(x)=f(x)+(x-a)2+(a-x)3-3+6ex,若g(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知函数f(x)=13-8x+$\sqrt{2}$x2,且f′(x0)=4,求x0的值.
(2)已知函数f(x)=x2+2xf′(0),求f′(0)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P(x,y)在椭圆$\frac{{x}^{2}}{64}+\frac{{y}^{2}}{39}=1$上,若定点A(5,0),动点M满足|$\overrightarrow{AM}$|=1,且$\overrightarrow{PM•}$$\overrightarrow{AM}$=0,则|$\overrightarrow{PM}$的最小值是|2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P(x0,y0)在抛物线W:y2=4x上,且点P到W的准线的距离与点P到x轴的距离相等,则x0的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若ab<0且a+b=1,二项式(a+b)9按a的降幂排列,展开后其第二项不大于第三项,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平行四边形ABCD中,E为AB的中点,$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,则下列向量表示错误的是(  )
A.$\overrightarrow{AC}$=$\overrightarrow a$+$\overrightarrow b$B.$\overrightarrow{BD}$=$\overrightarrow a$-$\overrightarrow b$C.$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow a$D.$\overrightarrow{CB}$=-$\overrightarrow b$

查看答案和解析>>

同步练习册答案