精英家教网 > 高中数学 > 题目详情
20.在40件产品中有12件次品,从中任取2件,则恰有1件次品的概率为$\frac{28}{65}$.

分析 先求出基本事件总数$n={C}_{40}^{2}$,再求出恰有1件次品包含的基本事件个数m=${C}_{28}^{1}{C}_{12}^{1}$,由此能求出恰有1件次品的概率.

解答 解:在40件产品中有12件次品,从中任取2件,
基本事件总数$n={C}_{40}^{2}$=780,
恰有1件次品包含的基本事件个数m=${C}_{28}^{1}{C}_{12}^{1}$=336,
则恰有1件次品的概率为p=$\frac{m}{n}=\frac{336}{780}$=$\frac{28}{65}$.
故答案为:$\frac{28}{65}$.

点评 本题考查概率的求法,涉及到古典概型、排列、组合等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是R上的奇函数,对于?x∈(0,+∞),都有f(x+2)=-f(x)且x∈(0,1]时f(x)=2x+1,则f(-2014)+f(2015)的值为(  )
A.0B.1C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(1+$\sqrt{x}}$)6(1+$\sqrt{x}$)4的展开式中x的系数是(  )
A.-4B.21C.45D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在三棱锥P-ABC中,△PAC和△PBC是边长为$\sqrt{2}$的等边三角形,AB=2,O是AB中点,E是BC中点.
(Ⅰ)求证:平面PAB⊥平面ABC;
(Ⅱ)求直线PB与平面PAC所成角的正弦值的大小;
(Ⅲ)在棱PB上是否存在一点F,使得B-OF-E的余弦值为$\frac{{\sqrt{6}}}{6}$?若存在,指出点F在PB上的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.社区主任要为小红等4名志愿者和他们帮助的2位老人拍照,要求排成一排,小红必须与两位老人都相邻,且两位老人不能排在两端,则不同的排法种数为(  )
A.24B.20C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$A({3,\frac{π}{3}})$,$B({3,\frac{7π}{6}})$,则△AOB的面积为(  )
A.$\frac{{\sqrt{3}}}{4}$B.3C.$\frac{9}{4}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,我校计划建一个面积为200m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需要维修),其余三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为41元/米,新墙的造价为400元/米.设利用旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用y(单位:元).
(1)将y表示为x的函数;
(2)求当x为何值时,y取得最小值,并求出此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$,$\overrightarrow{b}$不平行,向量$\overrightarrow{a}$+m$\overrightarrow{b}$与(2-m)$\overrightarrow{a}$+$\overrightarrow{b}$平行,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.三角形ABC中,E为AC的中点,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,且$\overrightarrow{AD}$与$\overrightarrow{EB}$夹角为120°,|$\overrightarrow{AD}$|=1,|$\overrightarrow{BE}$|=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{32}{25}$.

查看答案和解析>>

同步练习册答案