精英家教网 > 高中数学 > 题目详情
12.如图,我校计划建一个面积为200m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需要维修),其余三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为41元/米,新墙的造价为400元/米.设利用旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用y(单位:元).
(1)将y表示为x的函数;
(2)求当x为何值时,y取得最小值,并求出此最小值.

分析 (1)利用已知条件列出函数的解析式即可.
(2)利用基本不等式求解函数的最值即可.

解答 解:(1)由题意得矩形场地的另一边长为$\frac{200}{x}$米,
∴y=41x+(x+2×$\frac{200}{x}-2$)×400=441x+$\frac{160000}{x}$-800,(x>0).
(2)由(1)得y=441x+$\frac{160000}{x}$-800≥2$\sqrt{441x•\frac{160000}{x}}$-800=16000,
当且仅当441x=$\frac{160000}{x}$,即x=$\frac{400}{21}$时,等号成立,
即当x=$\frac{400}{21}$时,y取得最小值16000元.

点评 本题考查函数的实际应用,基本不等式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.椭圆x2+4y2=16的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}+ax-5$在[-1,2]上不单调,则实数a的取值范围是(  )
A.[-3,1)B.(-3,0)C.(-3,1)D.(-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在40件产品中有12件次品,从中任取2件,则恰有1件次品的概率为$\frac{28}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足a1=60,an+1-an=2n,则$\frac{{a}_{n}}{n}$的最小值为(  )
A.$\frac{29}{2}$B.2$\sqrt{60}$C.$\frac{29}{4}$D.$\frac{102}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知长方体有一个公共顶点的三个面的面积分别是$\sqrt{3}$,$\sqrt{5}$,$\sqrt{15}$.则长方体的体积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥A-BCFE中,四边形EFCB为梯形,EF∥BC,且EF=$\frac{3}{4}$BC,△ABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)证明:平面FGB⊥平面ABC;
(2)求二面角E-AB-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值$\frac{{3\sqrt{3}{R^2}}}{4}$,则t的取值范围是[$\frac{3R}{2}$,2R).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果随机变量ξ~B(6,$\frac{1}{2}$),则P(ξ=3)的值为(  )
A.$\frac{5}{16}$B.$\frac{5}{8}$C.$\frac{3}{16}$D.$\frac{7}{16}$

查看答案和解析>>

同步练习册答案