精英家教网 > 高中数学 > 题目详情
1.在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值$\frac{{3\sqrt{3}{R^2}}}{4}$,则t的取值范围是[$\frac{3R}{2}$,2R).

分析 设圆内接等腰三角形的底边长为2x,高为h,则x2=h(2R-h),得到S2=x2h2=h3(2R-h)=-h4+2Rh3,(0<h<2R),构造函数(h)=-h4+2Rh3,(0<h<2R),利用导数求出函数的最值,即可得到t的范围.

解答 解:设圆内接等腰三角形的底边长为2x,高为h,则x2=h(2R-h),
∵S△ABC=xh,
∴S2=x2h2=h3(2R-h)=-h4+2Rh3,(0<h<2R),
令f(h)=-h4+2Rh3,(0<h<2R),
∴f′(h)=-4h3+6Rh2=2h2(3R-2h),
令f′(h)=0,解得h=$\frac{3R}{2}$,
当0<h<$\frac{3R}{2}$时,f′(h)>0,函数f(h)单调递增,
当$\frac{3R}{2}$<h<2R时,f′(h)<0,函数f(h)单调递减,
∴f(h)max=f($\frac{3R}{2}$)=$\frac{27{R}^{4}}{16}$,
∴Smax=$\frac{3\sqrt{3}{R}^{2}}{4}$,
∴h=$\frac{3R}{2}$∈(0,t),
∴t的范围为[$\frac{3R}{2}$,2R),
故答案为:[$\frac{3R}{2}$,2R).

点评 本题主要考查了利用导数研究函数的最值,考查了学生的分析问题,解决问题的能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.(1+$\sqrt{x}}$)6(1+$\sqrt{x}$)4的展开式中x的系数是(  )
A.-4B.21C.45D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,我校计划建一个面积为200m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需要维修),其余三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为41元/米,新墙的造价为400元/米.设利用旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用y(单位:元).
(1)将y表示为x的函数;
(2)求当x为何值时,y取得最小值,并求出此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$,$\overrightarrow{b}$不平行,向量$\overrightarrow{a}$+m$\overrightarrow{b}$与(2-m)$\overrightarrow{a}$+$\overrightarrow{b}$平行,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,则{an}的通项公式为an=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,若a=2,b=sinA+cosA=$\sqrt{2}$,则△ABC的面积为(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{3}+1}{4}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{{{e^x}+a}}{{{e^x}-1}}$为奇函数.
(1)则a=1
(2)函数g(x)=f(x)-$\frac{2}{x}$的值域为(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.三角形ABC中,E为AC的中点,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,且$\overrightarrow{AD}$与$\overrightarrow{EB}$夹角为120°,|$\overrightarrow{AD}$|=1,|$\overrightarrow{BE}$|=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{32}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)

查看答案和解析>>

同步练习册答案