精英家教网 > 高中数学 > 题目详情
16.设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,则{an}的通项公式为an=3n-1

分析 通过an+1=2Sn+1与an=2Sn-1+1作差可知an+1=3an(n≥2),进而验证当n=1时an+1=3an也成立,从而利用等比数列通项公式计算即得结论.

解答 解:因为an+1=2Sn+1,
所以当n≥2时an=2Sn-1+1,
两式相减得:an+1-an=2an,即an+1=3an(n≥2),
又因为S2=4,a2=2a1+1,
所以a2=3,a1=1,
所以当n=1时an+1=3an也成立,
所以数列{an}是首项为1、公比为3的等比数列,
所以an=3n-1
故答案为:an=3n-1

点评 本题考查数列的通项,考查等比数列及其判定,考查转化与化归思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=lnax,其中a>0,过点A(0,a)作与x轴平行的直线交函数f(x)的图象于点P,过点P作f(x)图象的切线交y轴于点B,则△ABP面积的最小值为$\frac{e}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足a1=60,an+1-an=2n,则$\frac{{a}_{n}}{n}$的最小值为(  )
A.$\frac{29}{2}$B.2$\sqrt{60}$C.$\frac{29}{4}$D.$\frac{102}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥A-BCFE中,四边形EFCB为梯形,EF∥BC,且EF=$\frac{3}{4}$BC,△ABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)证明:平面FGB⊥平面ABC;
(2)求二面角E-AB-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若tanα=3tanβ,其中0<β≤α<$\frac{π}{2}$,则α-β的最大值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值$\frac{{3\sqrt{3}{R^2}}}{4}$,则t的取值范围是[$\frac{3R}{2}$,2R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE∥AF,∠BAF=90°,平面ABCD⊥平面ABEF.
(Ⅰ)求证:AC⊥平面ABEF;
(Ⅱ)求证:CD∥平面AEF;
(Ⅲ)求三棱锥D-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{m}{x}$+xlnx(m>0),g(x)=lnx-2.
(1)当m=1时,求函数f(x)的单调增区间;
(2)若对任意的x1∈[1,e],总存在x2∈[1,e],使$\frac{f({x}_{1})}{{x}_{1}}$•$\frac{g({x}_{2})}{{x}_{2}}$=-1,其中e是自然对数的底数.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m(  )
A.与a有关,且与b有关B.与a有关,但与b无关
C.与a无关,且与b无关D.与a无关,但与b有关

查看答案和解析>>

同步练习册答案