精英家教网 > 高中数学 > 题目详情
11.若tanα=3tanβ,其中0<β≤α<$\frac{π}{2}$,则α-β的最大值为$\frac{π}{6}$.

分析 由题意0<β≤α<$\frac{π}{2}$,tanβ>0,利用α-β的正切与tanα=3tanβ,可求得关于tanβ的关系式,利用基本不等式可求得tan(α-β)的最大值,再由正切函数的单调性即可求得答案.

解答 解:∵tanα=3tanβ,又0≤β<α<$\frac{π}{2}$,
∴tanβ>0,
∴tan(α-β)=$\frac{tanα-tanβ}{1+tanαtanβ}$=$\frac{2tanβ}{1+3ta{n}^{2}β}$=$\frac{2}{\frac{1}{tanβ}+3tanβ}$
∵tanβ>0,
$\frac{1}{tanβ}+3tanβ≥2\sqrt{\frac{1}{tanβ}×3tanβ}$=2$\sqrt{3}$,
∴0<tan(α-β)≤$\frac{\sqrt{3}}{3}$.
又y=tanx在(0,$\frac{π}{2}$)上单调递增,
(当且仅当3tan2β=1,即$tanβ=\frac{\sqrt{3}}{3}$取等号,此时$β=\frac{π}{6}$,tanα=3tanβ,即tanα=$\sqrt{3}$,此时$α=\frac{π}{3}$)
则α-β的最大值$\frac{π}{3}-\frac{π}{6}=\frac{π}{6}$
故答案为:$\frac{π}{6}$.

点评 本题考查两角差的正切函数及正切函数的单调性,考查基本不等式,考查综合分析与运算的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知(2x-1)3=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在${(\sqrt{x}-\frac{1}{{2\root{4}{x}}})^n}$的展开式中,只有第5项二项式系数最大.
(1)判断展开式中是否存在常数项,若存在,求出常数项;若不存在,说明理由;
(2)求展开式的所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是各项均为正数的等比数列,且a2=2,a3=2+2a1
(1)求数列{an}的通项公式;
(2)求数列{$\frac{2n-1}{{a}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}2x-y≥0\\ 2x+y≤6\\ y≥\frac{1}{2}\end{array}\right.$,则$y+\frac{1}{2x}$的最大值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,则{an}的通项公式为an=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,若点${A_n}({n,\frac{S_n}{n}})$在函数f(x)=-x+c的图象上运动,其中c是与x无关的常数,且a1=3.
(1)求数列{an}的通项公式;
(2)记${b_n}={a_{a_n}}$,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={x|1≤x≤3},Q={x|x2≥4},则P∩(∁RQ)=(  )
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,$\overrightarrow{AB}•\overrightarrow{AC}$=-6,S△ABC=3,求A和a.

查看答案和解析>>

同步练习册答案