精英家教网 > 高中数学 > 题目详情
20.已知集合P={x|1≤x≤3},Q={x|x2≥4},则P∩(∁RQ)=(  )
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

分析 化简集合Q,根据交集和补集的定义写出运算结果即可.

解答 解:集合P={x∈|1≤x≤3},Q={x|x2≥4}={x|x≤-2或x≥2},
则∁RQ={x|-2<x<2},
∴P∩(∁RQ)={x|1≤x<2}=[1,2).
故选:C.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x^2}{{1+{x^2}}}$.
(Ⅰ)分别求$f(2)+f(\frac{1}{2})$,$f(3)+f(\frac{1}{3})$,$f(4)+f(\frac{1}{4})$的值;
(Ⅱ)归纳猜想一般性结论,并给出证明;
(Ⅲ)求值:$f(1)+f(2)+…+f(2011)+f(\frac{1}{2011})+f(\frac{1}{2010})+…+f(\frac{1}{2})+f(1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若tanα=3tanβ,其中0<β≤α<$\frac{π}{2}$,则α-β的最大值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE∥AF,∠BAF=90°,平面ABCD⊥平面ABEF.
(Ⅰ)求证:AC⊥平面ABEF;
(Ⅱ)求证:CD∥平面AEF;
(Ⅲ)求三棱锥D-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.产品中有正品4件,次品3件,从中任取2件:
①恰有一件次品和恰有2件次品;
②至少有1件次品和全都是次品;
③至少有1件正品和至少有一件次品;
④至少有一件次品和全是正品.
上述四组事件中,互为互斥事件的组数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{m}{x}$+xlnx(m>0),g(x)=lnx-2.
(1)当m=1时,求函数f(x)的单调增区间;
(2)若对任意的x1∈[1,e],总存在x2∈[1,e],使$\frac{f({x}_{1})}{{x}_{1}}$•$\frac{g({x}_{2})}{{x}_{2}}$=-1,其中e是自然对数的底数.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.给定椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆的“伴随圆”.已知A(2,1)是椭圆G:x2+4y2=m(m>0)上的点.
(Ⅰ)若过点P(0,$\sqrt{10}$)的直线l与椭圆G有且只有一个公共点,求直线l被椭圆G的“伴随圆”G1所截得的弦长;
(Ⅱ)若椭圆G上的M,N两点满足4k1k2=-1(k1,k2是直线AM,AN的斜率),求证:M,N,O三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,若复数z满足zi=1+i,则z2=(  )
A.-2iB.2iC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=12.

查看答案和解析>>

同步练习册答案