精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{x^2}{{1+{x^2}}}$.
(Ⅰ)分别求$f(2)+f(\frac{1}{2})$,$f(3)+f(\frac{1}{3})$,$f(4)+f(\frac{1}{4})$的值;
(Ⅱ)归纳猜想一般性结论,并给出证明;
(Ⅲ)求值:$f(1)+f(2)+…+f(2011)+f(\frac{1}{2011})+f(\frac{1}{2010})+…+f(\frac{1}{2})+f(1)$.

分析 (Ⅰ)f(x)=$\frac{x^2}{{1+{x^2}}}$,利用函数性质能求出f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(3)+f($\frac{1}{3}$)的值.
(Ⅱ)猜想f(x)+f($\frac{1}{x}$)=1,再利用函数性质进行证明.
(Ⅲ)由f(x)+f($\frac{1}{x}$)=1,能求出f(1)+[f(1)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2011)+f($\frac{1}{2011}$)]的值

解答 解:(Ⅰ)∵$f(x)=\frac{x^2}{{1+{x^2}}}$,
∴$f(2)+f(\frac{1}{2})=\frac{2^2}{{1+{2^2}}}+\frac{{{{(\frac{1}{2})}^2}}}{{1+{{(\frac{1}{2})}^2}}}=\frac{2^2}{{1+{2^2}}}+\frac{1}{{{2^2}+1}}=1$,
同理可得$f(3)+f(\frac{1}{3})=1$,$f(4)+f(\frac{1}{4})=1$.
(Ⅱ)由(Ⅰ)猜想$f(x)+f(\frac{1}{x})=1$.
证明:$f(x)+f(\frac{1}{x})=\frac{x^2}{{1+{x^2}}}+\frac{{{{(\frac{1}{x})}^2}}}{{1+{{(\frac{1}{x})}^2}}}=\frac{x^2}{{1+{x^2}}}+\frac{1}{{{x^2}+1}}=1$.
(Ⅲ)令$S=f(1)+f(2)+…+f(2011)+f(\frac{1}{2011})+f(\frac{1}{2010})+…+f(\frac{1}{2})+f(1)$,
则$S=f(1)+f(\frac{1}{2})+…+f(\frac{1}{2011})+f(2011)+f(2010)+…+f(2)+f(1)$,
则2S=4022,故S=2011.

点评 本题考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.近年来我国电子商务行业发展迅速,相关管理部门推出了针对电商的商品质量和服务评价的评价体系,现从评价系统中选出某商家的200次成功交易,发现对商品质量的好评率为0.6,对服务评价的好评率为0.75,其中对商品质量和服务评价都做出好评的交易80次.请问是否可以在犯错误概率不超过0.1%的前提下,认为商品质量与服务好评有关?
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知(2x-1)3=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$y=\frac{2}{x}+ln\frac{1}{x-1}$的零点所在的大致区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知复数z=1+bi(b为正实数),且(z-2)2为纯虚数.
(Ⅰ)求复数z;
(Ⅱ)若$ω=\frac{z}{2+i}$,求复数ω的模|ω|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.社区主任要为小红等4名志愿者和他们帮助的2位老人拍照,要求排成一排,小红必须与两位老人都相邻,且两位老人不能排在两端,则不同的排法种数为(  )
A.24B.20C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在${(\sqrt{x}-\frac{1}{{2\root{4}{x}}})^n}$的展开式中,只有第5项二项式系数最大.
(1)判断展开式中是否存在常数项,若存在,求出常数项;若不存在,说明理由;
(2)求展开式的所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是各项均为正数的等比数列,且a2=2,a3=2+2a1
(1)求数列{an}的通项公式;
(2)求数列{$\frac{2n-1}{{a}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={x|1≤x≤3},Q={x|x2≥4},则P∩(∁RQ)=(  )
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

同步练习册答案