20£®½üÄêÀ´ÎÒ¹úµç×ÓÉÌÎñÐÐÒµ·¢Õ¹Ñ¸ËÙ£¬Ïà¹Ø¹ÜÀí²¿ÃÅÍÆ³öÁËÕë¶ÔµçÉ̵ÄÉÌÆ·ÖÊÁ¿ºÍ·þÎñÆÀ¼ÛµÄÆÀ¼ÛÌåϵ£¬ÏÖ´ÓÆÀ¼ÛϵͳÖÐÑ¡³öijÉ̼ҵÄ200´Î³É¹¦½»Ò×£¬·¢ÏÖ¶ÔÉÌÆ·ÖÊÁ¿µÄºÃÆÀÂÊΪ0.6£¬¶Ô·þÎñÆÀ¼ÛµÄºÃÆÀÂÊΪ0.75£¬ÆäÖжÔÉÌÆ·ÖÊÁ¿ºÍ·þÎñÆÀ¼Û¶¼×ö³öºÃÆÀµÄ½»Ò×80´Î£®ÇëÎÊÊÇ·ñ¿ÉÒÔÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÈÏΪÉÌÆ·ÖÊÁ¿Óë·þÎñºÃÆÀÓйأ¿
P£¨K2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
²Î¿¼¹«Ê½£ºk2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®

·ÖÎö ÓÉÌâÒâÁгö2¡Á2ÁÐÁª±í£¬¼ÆËã¹Û²âÖµK2£¬¶ÔÕÕÊý±í¼´¿ÉµÃ³öÕýÈ·µÄ½áÂÛ£»

½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±íΪ£º

¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶ÔÉÌÆ·ºÃÆÀ8040120
¶ÔÉÌÆ·²»ÂúÒâ701080
ºÏ¼Æ15050200
¼ÆËã¹Û²âÖµ${k}^{2}=\frac{200¡Á£¨80¡Á40-40¡Á70£©^{2}}{150¡Á50¡Á120¡Á80}¡Ö11.11$£¾10.8
¶ÔÕÕÊý±íÖª£¬ÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ»

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËͳ¼ÆÓë¸ÅÂʵÄÏà¹ØÖªÊ¶£¬2¡Á2ÁÐÁª±í½¨Á¢ºÍÅжϣ®ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®3-2£¬21.5£¬log23Èý¸öÊýÖÐ×î´óµÄÊýÊÇ21.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éè±äÁ¿x£¬yÂú×ã²»µÈʽ$\left\{\begin{array}{l}{x+y¡Ý3}\\{x-y¡Ý-1}\\{2x-y¡Ü3}\end{array}\right.$£¬Ôòx2+y2µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{3\sqrt{2}}{2}$B£®$\frac{9}{2}$C£®$\sqrt{5}$D£®2$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Ö±Ïßy=kx+1£¨k¡ÊR£©ÓëÍÖÔ²$\frac{x^2}{5}+\frac{y^2}{m}=1$ºãÓÐÁ½¸ö¹«¹²µã£¬ÔòmµÄȡֵ·¶Î§Îª£¨1£¬5£©¡È£¨5£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚµÈÑüÌÝÐÎABCDÖУ¬AB¡ÎDC£¬AB=2£¬BC=1£¬¡ÏABC=60¡ã£®¶¯µãEºÍF·Ö±ðÔÚÏß¶ÎBCºÍDCÉÏ£¬ÇÒ$\overrightarrow{BE}=¦Ë\overrightarrow{BC}£¬\overrightarrow{DF}=\frac{1}{9¦Ë}\overrightarrow{DC}$£®
£¨1£©µ±¦Ë=$\frac{1}{2}$£¬Çó|$\overrightarrow{AE}$|£»
£¨2£©Çó$\overrightarrow{AE}•\overrightarrow{AF}$µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªz=$\frac{£¨1-i£©^{2}}{1+i}$£¬ÔòzµÄ¹²éÊýµÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®iB£®-iC£®1D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÊýÁÐ{an}ǰnÏîºÍΪSn£¬a1=-$\frac{2}{3}$£¬ÇÒSn+$\frac{1}{Sn}$+2=an£¨n¡Ý2£©£®
£¨1£©¼ÆËãS1£¬S2£¬S3£¬S4µÄÖµ£¬²ÂÏëSnµÄ½âÎöʽ£»
£¨2£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ËùµÃµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®²»µÈʽ|2a-b|+|a+b|¡Ý|a|£¨|x-1|+|x+1|£©¶ÔÓÚÈÎÒⲻΪ0µÄʵÊýa£¬bºã³ÉÁ¢£¬ÔòʵÊýxµÄ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨-¡Þ£¬-\frac{1}{2}]¡È[\frac{1}{2}£¬+¡Þ£©$B£®$[-\frac{1}{2}£¬\frac{1}{2}]$C£®$£¨-¡Þ£¬-\frac{3}{2}]¡È[\frac{3}{2}£¬+¡Þ£©$D£®$[-\frac{3}{2}£¬\frac{3}{2}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x^2}{{1+{x^2}}}$£®
£¨¢ñ£©·Ö±ðÇó$f£¨2£©+f£¨\frac{1}{2}£©$£¬$f£¨3£©+f£¨\frac{1}{3}£©$£¬$f£¨4£©+f£¨\frac{1}{4}£©$µÄÖµ£»
£¨¢ò£©¹éÄɲÂÏëÒ»°ãÐÔ½áÂÛ£¬²¢¸ø³öÖ¤Ã÷£»
£¨¢ó£©ÇóÖµ£º$f£¨1£©+f£¨2£©+¡­+f£¨2011£©+f£¨\frac{1}{2011}£©+f£¨\frac{1}{2010}£©+¡­+f£¨\frac{1}{2}£©+f£¨1£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸