精英家教网 > 高中数学 > 题目详情
8.如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE∥AF,∠BAF=90°,平面ABCD⊥平面ABEF.
(Ⅰ)求证:AC⊥平面ABEF;
(Ⅱ)求证:CD∥平面AEF;
(Ⅲ)求三棱锥D-AEF的体积.

分析 (Ⅰ)推导出AB⊥AC,由此利用平面ABCD⊥平面ABEF,能证明AC⊥平面ABEF.
(Ⅱ)求出CD∥AB,由此能证明CD∥平面AEF.
(Ⅲ)由V三棱锥D-AEF=V三棱锥C-AEF,能求出三棱锥D-AEF的体积.

解答 证明:(Ⅰ)∵在△ABC中,AB=1,BC=2,∠ABC=60°,
∴AC2=AB2+BC2-2AB•BC•cos∠ABC
=${1}^{2}+{2}^{2}-2×1×2×\frac{1}{2}$=3,
∴AC2+AB2=BC2,∴AB⊥AC,
∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,
且AC?平面ABCD,
∴AC⊥平面ABEF.
(Ⅱ)∵四边形ABCD是平行四边形,
∴CD∥AB,
∵CD?平面ABEF,AB?平面ABEF,
∴CD∥平面AEF.
解:(Ⅲ)连结CF,由(Ⅱ)知CD∥平面AEF,
∴点D到平面AEF的距离等于点C到平面AEF的距离,
由(Ⅰ)知AC=$\sqrt{3}$,
∴三棱锥D-AEF的体积V三棱锥D-AEF=V三棱锥C-AEF=$\frac{1}{3}×(\frac{1}{2}×3×1)×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查线面垂直、线面平行的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数$y=\frac{2}{x}+ln\frac{1}{x-1}$的零点所在的大致区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是各项均为正数的等比数列,且a2=2,a3=2+2a1
(1)求数列{an}的通项公式;
(2)求数列{$\frac{2n-1}{{a}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,则{an}的通项公式为an=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,若点${A_n}({n,\frac{S_n}{n}})$在函数f(x)=-x+c的图象上运动,其中c是与x无关的常数,且a1=3.
(1)求数列{an}的通项公式;
(2)记${b_n}={a_{a_n}}$,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{{{e^x}+a}}{{{e^x}-1}}$为奇函数.
(1)则a=1
(2)函数g(x)=f(x)-$\frac{2}{x}$的值域为(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={x|1≤x≤3},Q={x|x2≥4},则P∩(∁RQ)=(  )
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos$\frac{x}{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)-$\sqrt{3}$cos2$\frac{x}{2}$+$\frac{\sqrt{3}}{4}$.
(Ⅰ)求f(x)在区间[0,π]内的单调区间;
(Ⅱ)若f(x0)=$\frac{2}{5}$,x0∈[0,$\frac{π}{2}$],求sinx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=lnx+ln(2-x),则(  )
A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减
C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称

查看答案和解析>>

同步练习册答案