精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=cos$\frac{x}{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)-$\sqrt{3}$cos2$\frac{x}{2}$+$\frac{\sqrt{3}}{4}$.
(Ⅰ)求f(x)在区间[0,π]内的单调区间;
(Ⅱ)若f(x0)=$\frac{2}{5}$,x0∈[0,$\frac{π}{2}$],求sinx0的值.

分析 (Ⅰ)求f(x)在区间[0,π]内的单调区间;
(Ⅱ)利用同角三角函数基本关系式以及两角和与差的三角函数化简求解即可.

解答 解:(Ⅰ)函数f(x)=cos$\frac{x}{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)-$\sqrt{3}$cos2$\frac{x}{2}$+$\frac{\sqrt{3}}{4}$
=cos$\frac{x}{2}$($\frac{1}{2}$sin$\frac{x}{2}$+$\frac{\sqrt{3}}{2}$cos$\frac{x}{2}$)-$\sqrt{3}$cos2$\frac{x}{2}$+$\frac{\sqrt{3}}{4}$
=$\frac{1}{4}$sinx-$\frac{\sqrt{3}}{2}•\frac{1+cosx}{2}+\frac{\sqrt{3}}{4}$
=$\frac{1}{2}$sin(x-$\frac{π}{3}$).
x∈[0,π],x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
令t=x-$\frac{π}{3}$,y=sint在[-$\frac{π}{3}$,$\frac{π}{2}$]内的单调增函数;
y=sint在$[\frac{π}{2},\frac{2π}{3}]$上单调减函数,
∴f(x)的单调增区间是[0,$\frac{5π}{6}$],单调减区间是[$\frac{5π}{6}$,π].
(Ⅱ)f(x0)=$\frac{2}{5}$,x0∈[0,$\frac{π}{2}$],f(x0)=$\frac{1}{2}$sin(x0-$\frac{π}{3}$)=$\frac{2}{5}$,
可得sin(x0-$\frac{π}{3}$)=$\frac{4}{5}$,cos(x0-$\frac{π}{3}$)=$\sqrt{1-si{n}^{2}({x}_{0}-\frac{π}{3})}$=$\frac{3}{5}$,
sinx0=sin[(x0-$\frac{π}{3}$)+$\frac{π}{3}$]=$\frac{1}{2}$×$\frac{4}{5}$$+\frac{\sqrt{3}}{2}×\frac{3}{5}$=$\frac{4+3\sqrt{3}}{10}$.

点评 本题考查三角函数的化简求值,两角和与差的三角函数,正弦函数的单调区间的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足a1=60,an+1-an=2n,则$\frac{{a}_{n}}{n}$的最小值为(  )
A.$\frac{29}{2}$B.2$\sqrt{60}$C.$\frac{29}{4}$D.$\frac{102}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE∥AF,∠BAF=90°,平面ABCD⊥平面ABEF.
(Ⅰ)求证:AC⊥平面ABEF;
(Ⅱ)求证:CD∥平面AEF;
(Ⅲ)求三棱锥D-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{m}{x}$+xlnx(m>0),g(x)=lnx-2.
(1)当m=1时,求函数f(x)的单调增区间;
(2)若对任意的x1∈[1,e],总存在x2∈[1,e],使$\frac{f({x}_{1})}{{x}_{1}}$•$\frac{g({x}_{2})}{{x}_{2}}$=-1,其中e是自然对数的底数.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.给定椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆的“伴随圆”.已知A(2,1)是椭圆G:x2+4y2=m(m>0)上的点.
(Ⅰ)若过点P(0,$\sqrt{10}$)的直线l与椭圆G有且只有一个公共点,求直线l被椭圆G的“伴随圆”G1所截得的弦长;
(Ⅱ)若椭圆G上的M,N两点满足4k1k2=-1(k1,k2是直线AM,AN的斜率),求证:M,N,O三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果随机变量ξ~B(6,$\frac{1}{2}$),则P(ξ=3)的值为(  )
A.$\frac{5}{16}$B.$\frac{5}{8}$C.$\frac{3}{16}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,若复数z满足zi=1+i,则z2=(  )
A.-2iB.2iC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m(  )
A.与a有关,且与b有关B.与a有关,但与b无关
C.与a无关,且与b无关D.与a无关,但与b有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:
(i)男学生人数多于女学生人数;
(ii)女学生人数多于教师人数;
(iii)教师人数的两倍多于男学生人数.
①若教师人数为4,则女学生人数的最大值为6.
②该小组人数的最小值为12.

查看答案和解析>>

同步练习册答案