精英家教网 > 高中数学 > 题目详情
11.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)

分析 由题意分两类选1女3男或选2女2男,再计算即可

解答 解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,
第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,
根据分类计数原理共有480+180=660种,
故答案为:660

点评 本题考查了分类计数原理和分步计数原理,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值$\frac{{3\sqrt{3}{R^2}}}{4}$,则t的取值范围是[$\frac{3R}{2}$,2R).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果随机变量ξ~B(6,$\frac{1}{2}$),则P(ξ=3)的值为(  )
A.$\frac{5}{16}$B.$\frac{5}{8}$C.$\frac{3}{16}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m(  )
A.与a有关,且与b有关B.与a有关,但与b无关
C.与a无关,且与b无关D.与a无关,但与b有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x,y满足约束条件$\left\{\begin{array}{l}{x+3y≤3}\\{x-y≥1}\\{y≥0}\end{array}\right.$,则z=x+y的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,则z=3x-4y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x,y满足约束条件$\left\{\begin{array}{l}x+2y≤1\\ 2x+y≥-1\\ x-y≤0\end{array}\right.$,则z=3x-2y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z满足$z({\sqrt{3}+i})=1-\sqrt{3}i$,则|z|=(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案