分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=3x-4y的最小值.
解答
解:由z=3x-4y,得y=$\frac{3}{4}$x-$\frac{z}{4}$,作出不等式对应的可行域(阴影部分),
平移直线y=$\frac{3}{4}$x-$\frac{z}{4}$,由平移可知当直线y=$\frac{3}{4}$x-$\frac{z}{4}$,
经过点B(1,1)时,直线y=$\frac{3}{4}$x-$\frac{z}{4}$的截距最大,此时z取得最小值,
将B的坐标代入z=3x-4y=3-4=-1,
即目标函数z=3x-4y的最小值为-1.
故答案为:-1.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3,5 | B. | 5,5 | C. | 3,7 | D. | 5,7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在(0,2)单调递增 | B. | f(x)在(0,2)单调递减 | ||
| C. | y=f(x)的图象关于直线x=1对称 | D. | y=f(x)的图象关于点(1,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com