精英家教网 > 高中数学 > 题目详情
13.已知直线x=t经过抛物线C:y2=4x的焦点,且与C相交于A,B两点,则C的准线方程为x=-1,|AB|=4.

分析 直接利用抛物线方程求出准线方程,求出t,然后求出A,B,即可求出|AB|.

解答 解:抛物线C:y2=4x可得C的准线方程为:x=-1;
抛物线的焦点坐标(1,0),可得t=1,此时A(1,2),B(1,-2),则|AB|=4.
故答案为:x=-1;4.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,则z=3x-4y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若${({1+mx})^6}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,且a1-a2+a3-a4+a5-a6=-63,则实数m的值为3或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z满足$z({\sqrt{3}+i})=1-\sqrt{3}i$,则|z|=(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下面是关于复数z=2-i的四个命题:p1:|z|=5;p2:z2=3-4i;p3:z的共轭复数为-2+i;p4:z的虚部为-1,其中真命题为(  )
A.p2,p3B.p1,p2C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.由一个长方体和两个$\frac{1}{4}$ 圆柱体构成的几何体的三视图如图,则该几何体的体积为2+$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a∈R,函数f(x)=|x+$\frac{4}{x}$-a|+a在区间[1,4]上的最大值是5,则a的取值范围是(-∞,$\frac{9}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(x+y)(2x-y)5的展开式中的x3y3系数为 (  )
A.-80B.-40C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(  )
A.10B.12C.14D.16

查看答案和解析>>

同步练习册答案