精英家教网 > 高中数学 > 题目详情
18.由一个长方体和两个$\frac{1}{4}$ 圆柱体构成的几何体的三视图如图,则该几何体的体积为2+$\frac{π}{2}$.

分析 由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的$\frac{1}{4}$,根据长方体及圆柱的体积公式,即可求得几何体的体积.

解答 解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,
圆柱的底面半径为1,高为1,则圆柱的体积V2=$\frac{1}{4}$×π×12×1=$\frac{π}{4}$,
则该几何体的体积V=V1+2V1=2+$\frac{π}{2}$,
故答案为:2+$\frac{π}{2}$.

点评 本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数f(x)=ln(x2-2x-8)的单调递增区间是(  )
A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A={x|x2+2x-8<0},B={x||x-1|<1},则A∪B中元素为整数的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足z2=-4,则复数z的实部为(  )
A.2B.1C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线x=t经过抛物线C:y2=4x的焦点,且与C相交于A,B两点,则C的准线方程为x=-1,|AB|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,则满足f(x)+f(x-$\frac{1}{2}$)>1的x的取值范围是($-\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4$\sqrt{15}$cm3

查看答案和解析>>

同步练习册答案