精英家教网 > 高中数学 > 题目详情
6.在△ABC中,角A,B,C的对边分别为a,b,c,若a=2,b=sinA+cosA=$\sqrt{2}$,则△ABC的面积为(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{3}+1}{4}$D.$\frac{\sqrt{3}+1}{2}$

分析 利用已知条件求出A,通过正弦定理求出B,然后求解C,利用三角形的面积公式求解即可.

解答 解:在△ABC中,角A,B,C的对边分别为a,b,c,若a=2,b=sinA+cosA=$\sqrt{2}$,
可得$\sqrt{2}$sin(A+$\frac{π}{4}$)=$\sqrt{2}$,可得A=$\frac{π}{4}$,
由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{2}}{2}}{2}$=$\frac{1}{2}$,
∵a>b,∴A>B,可得B=$\frac{π}{6}$,所以C=$\frac{7π}{12}$,
则△ABC的面积为:$\frac{1}{2}absinC$=$\frac{1}{2}×2×\sqrt{2}×sin\frac{7π}{12}$=$\frac{\sqrt{2}(\sqrt{6}+\sqrt{2})}{4}$=$\frac{\sqrt{3}+1}{2}$.
故选:D.

点评 本题考查正弦定理的应用,三角形的面积公式的应用,注意正弦定理以及三角形边角关系的应用,是易错点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知$tan({π-α})=\frac{3}{4},α∈({\frac{π}{2},π})$,则cosα=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知长方体有一个公共顶点的三个面的面积分别是$\sqrt{3}$,$\sqrt{5}$,$\sqrt{15}$.则长方体的体积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的几何体中,EA⊥平面ABC,DB∥EA,AC⊥BC,且BC=BD=3,AE=2,AC=3$\sqrt{2}$,AF=2FB
(1)求证:CF⊥EF;
(2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值$\frac{{3\sqrt{3}{R^2}}}{4}$,则t的取值范围是[$\frac{3R}{2}$,2R).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的通项为an=$\left\{{\begin{array}{l}{n+\frac{15}{n},n≤5}\\{alnn-\frac{1}{4},n>5}\end{array}}$,若{an}的最小值为$\frac{31}{4}$,则实数a的取值范围是[$\frac{8}{ln6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,一根长l(单位:cm)的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是:s=3cos($\sqrt{\frac{g}{l}}$t+$\frac{π}{3}$),t∈[0,+∞),(其中g≈1000cm/s2);

(1)当t=0时,小球离开平衡位置的位移s是多少cm?
(2)若l=40cm,小球每1s能往复摆动多少次?要使小球摆动的周期是1s,则线的长度应该调整为多少cm?
(3)某同学在观察小球摆动时,用照相机随机记录了小球的位置,他共拍摄了300张照片,并且想估算出大约有多少张照片满足小球离开平衡位置的距离(位移的绝对值)比t=0时小球离开平衡位置的距离小.为了解决这个问题,他通过分析,将上述函数化简为f(x)=3cos(x+$\frac{π}{3}$),x∈[0,2π).请帮他在图2中画出y=f(x)的图象并解决上述问题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是(  )
A.S>$\frac{1}{2}$B.S>$\frac{3}{5}$C.S>$\frac{7}{10}$D.S>$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x,y满足约束条件$\left\{\begin{array}{l}{x+3y≤3}\\{x-y≥1}\\{y≥0}\end{array}\right.$,则z=x+y的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案