分析 根据偶函数的定义,结合f(x+4)-f(x)=2f(2),令x=-2,求出f(2)=0,从而函数f(x)是周期为4的函数,f(2018)=f(2),再由偶函数的定义得f(2)=0.
解答 解:∵f(x)是定义在R上的偶函数,∴f(-2)=f(2),
∵对任意x∈R都有f(x+4)=f(x)+2f(2),
令x=-2,则f(2)=f(-2)+2f(2),
∴f(2)=0,∴f(x+4)=f(x),
即函数f(x)是最小正周期为4的函数,
∴f(2018)=f(4×504+2)=f(2)=0.
故答案为:0.
点评 本题主要考查函数的周期性及应用,函数的奇偶性的定义和运用,考查解决抽象函数常用的方法:赋值法,正确赋值是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com